Version 13.1 by mhashemi on 2025/05/09 16:54

Hide last authors
mhashemi 1.1 1 (% class="row" %)
2 (((
3 (% class="col-xs-12 col-sm-8" %)
4 (((
mhashemi 7.1 5
mhashemi 1.1 6 )))
7
8 (% class="col-xs-12 col-sm-4" %)
9 (((
10
11 )))
mhashemi 9.1 12
mhashemi 10.1 13 This tool was developed at INS in Marseille.
14 Authors: Nina Baldy, Marmaduke Woodman, Viktor Jirsa, Meysam Hashemi
15
16
mhashemi 9.1 17 The aim is to provide inference services for Dynamical Causal Modeling of Event-Related Potentials (ERPs) measured with EEG/MEG, using SATO Probabilistic Programming Languages (PPLs):
18
19 Numpyro: [[https:~~/~~/num.pyro.ai/en/stable/>>url:https://num.pyro.ai/en/stable/]]
20
21 Blackjax: [[https:~~/~~/blackjax-devs.github.io/blackjax/>>url:https://blackjax-devs.github.io/blackjax/]]
22
23 PyMC: [[https:~~/~~/www.pymc.io/welcome.html>>url:https://www.pymc.io/welcome.html]]
24
25 Stan: [[https:~~/~~/mc-stan.org/>>url:https://mc-stan.org/]]
mhashemi 10.1 26
mhashemi 10.2 27 We have provided a taxonomy for model comparison tailored to algorithms: (1) adaptive Hamiltonian Monte Carlo, (2) automatic Laplace and (3) family of variational inference. We have provided solutions to address the deference by: 1) optimizing the hyperparameters, (2) leveraging initialization with prior information, (3) weighted stacking based on predictive accuracy.
mhashemi 10.1 28
mhashemi 10.2 29
mhashemi 13.1 30 Github: [[https:~~/~~/github.com/ins-amu/DCM_PPLs>>https://github.com/ins-amu/DCM_PPLs]]
31
32
mhashemi 10.1 33 Notebooks:
mhashemi 9.1 34 \\[[https:~~/~~/wiki.ebrains.eu/bin/view/Collabs/ebrains-task-3-3/Drive#notebooks/DCM_ERP_NumPyro>>https://wiki.ebrains.eu/bin/view/Collabs/ebrains-task-3-3/Drive#notebooks/DCM_ERP_NumPyro]]
mhashemi 10.1 35 \\Tutorial:
mhashemi 9.1 36
mhashemi 10.1 37 [[https:~~/~~/wiki.ebrains.eu/bin/view/Collabs/ebrains-task-3-3/Drive#notebooks/EITN_tutorial>>https://wiki.ebrains.eu/bin/view/Collabs/ebrains-task-3-3/Drive#notebooks/EITN_tutorial]]
38
mhashemi 12.1 39 {{{@article{AutoDCM,
mhashemi 9.1 40 title={Dynamic Causal Modeling in Probabilistic Programming Languages},
41 author={Baldy, Nina and Woodman, Marmaduke and Jirsa, Viktor and Hashemi, Meysam},
42 journal={bioRxiv},
43 pages={2024--11},
44 year={2024},
45 publisher={Cold Spring Harbor Laboratory}
46 }
47 }}}
48
49
mhashemi 1.1 50 )))