... |
... |
@@ -2,6 +2,8 @@ |
2 |
2 |
|
3 |
3 |
* ((( ==== **[[Beginner >>||anchor = "HBeginner-1"]]** ==== ))) |
4 |
4 |
|
|
5 |
+* ((( ==== **[[Intermediate >>||anchor = "HIntermediate-1"]]** ==== ))) |
|
6 |
+ |
5 |
5 |
=== **Beginner** === |
6 |
6 |
|
7 |
7 |
=== [[Creating a simple cell optimisation>>https://github.com/BlueBrain/BluePyOpt/blob/master/examples/simplecell/simplecell.ipynb||rel=" noopener noreferrer" target="_blank"]] === |
... |
... |
@@ -14,4 +14,36 @@ |
14 |
14 |
**Level**: beginner(%%) **Type**: interactive tutorial |
15 |
15 |
|
16 |
16 |
This notebook will explain how to optimise a model using the covariance matrix adaptation (CMA) optimisation strategy. BluePyOpt includes two flavors of CMA: a single objective one and a hybrid single/multi objective one. |
|
19 |
+=== [[Optimising synaptic parameters>>https://github.com/BlueBrain/BluePyOpt/blob/master/examples/expsyn/ExpSyn.ipynb||rel=" noopener noreferrer" target="_blank"]] === |
17 |
17 |
|
|
21 |
+**Level**: beginner(%%) **Type**: interactive tutorial |
|
22 |
+ |
|
23 |
+This notebook shows how the parameters of a NEURON point process (in this case a synapse), can be optimised using BluePyOpt. |
|
24 |
+=== **Intermediate** === |
|
25 |
+ |
|
26 |
+=== [[Creating an optimisation with meta parameters>>https://github.com/BlueBrain/BluePyOpt/blob/master/examples/metaparameters/metaparameters.ipynb||rel=" noopener noreferrer" target="_blank"]] === |
|
27 |
+ |
|
28 |
+**Level**: intermediate(%%) **Type**: interactive tutorial |
|
29 |
+ |
|
30 |
+This notebook will explain how to set up an optimisation that uses metaparameters (parameters that control other parameters) |
|
31 |
+=== [[Setup of a cell model with multi electrode simulation for local field potential recording>>https://github.com/BlueBrain/BluePyOpt/blob/master/examples/l5pc_lfpy/L5PC_LFPy.ipynb||rel=" noopener noreferrer" target="_blank"]] === |
|
32 |
+ |
|
33 |
+**Level**: intermediate(%%) **Type**: interactive tutorial |
|
34 |
+ |
|
35 |
+This notebook will demonstrate how to instantiate a cell model and evaluator that include local field potential (LFP) computation and its recording using a simulated multi electrode array (MEA). |
|
36 |
+=== [[Exporting a cell in the neuroml format and running it>>https://github.com/BlueBrain/BluePyOpt/blob/master/examples/neuroml/neuroml.ipynb||rel=" noopener noreferrer" target="_blank"]] === |
|
37 |
+ |
|
38 |
+**Level**: intermediate(%%) **Type**: interactive tutorial |
|
39 |
+ |
|
40 |
+In this tutorial we will go over how to export a cell to neuroml, create a LEMS simulation able to run the neuroml cell and then how to run the simulation. |
|
41 |
+=== [[Tsodyks-Markram model of short-term synaptic plasticity>>https://github.com/BlueBrain/BluePyOpt/blob/master/examples/tsodyksmarkramstp/tsodyksmarkramstp.ipynb||rel=" noopener noreferrer" target="_blank"]] === |
|
42 |
+ |
|
43 |
+**Level**: intermediate(%%) **Type**: interactive tutorial |
|
44 |
+ |
|
45 |
+In this notebook we demonstrate how to fit the parameters of the Tsodyks-Markram model to a given in vitro somatic recording. The in vitro trace used here shows a typical L5TTPC-L5TTPC depressing connection, kindly provided by Rodrigo Perin (EPFL). |
|
46 |
+=== [[Optimization of burst and tonic firing in thalamo-cortical neurons>>https://github.com/BlueBrain/BluePyOpt/blob/master/examples/thalamocortical-cell/thalamocortical-cell_opt.ipynb||rel=" noopener noreferrer" target="_blank"]] === |
|
47 |
+ |
|
48 |
+**Level**: intermediate(%%) **Type**: interactive tutorial |
|
49 |
+ |
|
50 |
+In this tutorial we will go over how to set up the cell model and the cell evaluator, run an optimisation and how to analyse optimisation results. |
|
51 |
+ |