| ... |
... |
@@ -14,9 +14,4 @@ |
| 14 |
14 |
**Level**: beginner(%%) **Type**: interactive tutorial |
| 15 |
15 |
|
| 16 |
16 |
This notebook will explain how to optimise a model using the covariance matrix adaptation (CMA) optimisation strategy. BluePyOpt includes two flavors of CMA: a single objective one and a hybrid single/multi objective one. |
| 17 |
|
-=== [[Optimising synaptic parameters>>https://github.com/BlueBrain/BluePyOpt/blob/master/examples/expsyn/ExpSyn.ipynb||rel=" noopener noreferrer" target="_blank"]] === |
| 18 |
18 |
|
| 19 |
|
-**Level**: beginner(%%) **Type**: interactive tutorial |
| 20 |
|
- |
| 21 |
|
-This notebook shows how the parameters of a NEURON point process (in this case a synapse), can be optimised using BluePyOpt. |
| 22 |
|
- |