... |
... |
@@ -4,6 +4,8 @@ |
4 |
4 |
|
5 |
5 |
* ((( ==== **[[Intermediate >>||anchor = "HIntermediate-1"]]** ==== ))) |
6 |
6 |
|
|
7 |
+* ((( ==== **[[Advanced >>||anchor = "HAdvanced-1"]]** ==== ))) |
|
8 |
+ |
7 |
7 |
=== **Beginner** === |
8 |
8 |
|
9 |
9 |
=== [[Creating a simple cell optimisation>>https://github.com/BlueBrain/BluePyOpt/blob/master/examples/simplecell/simplecell.ipynb||rel=" noopener noreferrer" target="_blank"]] === |
... |
... |
@@ -33,4 +33,36 @@ |
33 |
33 |
**Level**: intermediate(%%) **Type**: interactive tutorial |
34 |
34 |
|
35 |
35 |
This notebook will demonstrate how to instantiate a cell model and evaluator that include local field potential (LFP) computation and its recording using a simulated multi electrode array (MEA). |
|
38 |
+=== [[Exporting a cell in the neuroml format and running it>>https://github.com/BlueBrain/BluePyOpt/blob/master/examples/neuroml/neuroml.ipynb||rel=" noopener noreferrer" target="_blank"]] === |
36 |
36 |
|
|
40 |
+**Level**: intermediate(%%) **Type**: interactive tutorial |
|
41 |
+ |
|
42 |
+In this tutorial we will go over how to export a cell to neuroml, create a LEMS simulation able to run the neuroml cell and then how to run the simulation. |
|
43 |
+=== [[Tsodyks-Markram model of short-term synaptic plasticity>>https://github.com/BlueBrain/BluePyOpt/blob/master/examples/tsodyksmarkramstp/tsodyksmarkramstp.ipynb||rel=" noopener noreferrer" target="_blank"]] === |
|
44 |
+ |
|
45 |
+**Level**: intermediate(%%) **Type**: interactive tutorial |
|
46 |
+ |
|
47 |
+In this notebook we demonstrate how to fit the parameters of the Tsodyks-Markram model to a given in vitro somatic recording. The in vitro trace used here shows a typical L5TTPC-L5TTPC depressing connection, kindly provided by Rodrigo Perin (EPFL). |
|
48 |
+=== [[Optimization of burst and tonic firing in thalamo-cortical neurons>>https://github.com/BlueBrain/BluePyOpt/blob/master/examples/thalamocortical-cell/thalamocortical-cell_opt.ipynb||rel=" noopener noreferrer" target="_blank"]] === |
|
49 |
+ |
|
50 |
+**Level**: intermediate(%%) **Type**: interactive tutorial |
|
51 |
+ |
|
52 |
+In this tutorial we will go over how to set up the cell model and the cell evaluator, run an optimisation and how to analyse optimisation results. |
|
53 |
+=== **Advanced** === |
|
54 |
+ |
|
55 |
+=== [[Optimisation of a Neocortical Layer 5 Pyramidal Cell>>https://github.com/BlueBrain/BluePyOpt/blob/master/examples/l5pc/L5PC.ipynb||rel=" noopener noreferrer" target="_blank"]] === |
|
56 |
+ |
|
57 |
+**Level**: advanced(%%) **Type**: interactive tutorial |
|
58 |
+ |
|
59 |
+This notebook shows you how to optimise the maximal conductance of Neocortical Layer 5 Pyramidal Cell as used in Markram et al. 2015. |
|
60 |
+=== [[Optimisation of a Neocortical Layer 5 Pyramidal Cell in Arbor>>https://github.com/BlueBrain/BluePyOpt/blob/master/examples/l5pc/L5PC_arbor.ipynb||rel=" noopener noreferrer" target="_blank"]] === |
|
61 |
+ |
|
62 |
+**Level**: advanced(%%) **Type**: interactive tutorial |
|
63 |
+ |
|
64 |
+This notebook shows you how to optimise the maximal conductance of Neocortical Layer 5 Pyramidal Cell as used in Markram et al. 2015 using Arbor as the simulator. |
|
65 |
+=== [[Simulating optimized cell models in Arbor and cross-validation with Neuron>>https://github.com/BlueBrain/BluePyOpt/blob/master/examples/l5pc/l5pc_validate_neuron_arbor.ipynb||rel=" noopener noreferrer" target="_blank"]] === |
|
66 |
+ |
|
67 |
+**Level**: advanced(%%) **Type**: interactive tutorial |
|
68 |
+ |
|
69 |
+This notebook demonstrates how to run a simulation of a simple single compartmental cell with fixed/optimized parameters in Arbor. We follow the standard BluePyOpt flow of setting up an electrophysiological experiment and export the cell model to a mixed JSON/ACC-format. We then cross-validate voltage traces obtained with Arbor with those from a Neuron simulation. |
|
70 |
+ |