Attention: Jupyter services at CINECA will be unavailable tomorrow, Thursday 16th October, for up to 1 hour for maintenance. You can still select Jupyter in JSC for your workloads. Thank you for your understanding


Wiki source code of BluePyOpt

Version 16.1 by abonard on 2025/04/10 15:11

Hide last authors
adavison 1.1 1
abonard 3.1 2
3 * ((( ==== **[[Beginner >>||anchor = "HBeginner-1"]]** ==== )))
4
5 === **Beginner** ===
6
jessicamitchell 2.1 7 === [[Creating a simple cell optimisation>>https://github.com/BlueBrain/BluePyOpt/blob/master/examples/simplecell/simplecell.ipynb||rel=" noopener noreferrer" target="_blank"]] ===
adavison 1.1 8
abonard 3.1 9 **Level**: beginner(%%) **Type**: interactive tutorial
jessicamitchell 2.1 10
abonard 3.1 11 This notebook will explain how to set up an optimisation of simple single compartmental cell with two free parameters that need to be optimised. As this optimisation is for example purpose only, no real experimental data is used in this notebook.
abonard 15.1 12 === [[Optimisation using the CMA evolutionary strategy>>https://github.com/BlueBrain/BluePyOpt/blob/master/examples/cma_strategy/cma.ipynb||rel=" noopener noreferrer" target="_blank"]] ===
jessicamitchell 2.1 13
abonard 15.1 14 **Level**: beginner(%%) **Type**: interactive tutorial
15
16 This notebook will explain how to optimise a model using the covariance matrix adaptation (CMA) optimisation strategy. BluePyOpt includes two flavors of CMA: a single objective one and a hybrid single/multi objective one.
abonard 16.1 17 === [[Optimising synaptic parameters>>https://github.com/BlueBrain/BluePyOpt/blob/master/examples/expsyn/ExpSyn.ipynb||rel=" noopener noreferrer" target="_blank"]] ===
abonard 15.1 18
abonard 16.1 19 **Level**: beginner(%%) **Type**: interactive tutorial
20
21 This notebook shows how the parameters of a NEURON point process (in this case a synapse), can be optimised using BluePyOpt.
22