Hide last authors
author | version | line-number | content |
---|---|---|---|
![]() |
1.1 | 1 | |
![]() |
3.1 | 2 | |
3 | * ((( ==== **[[Beginner >>||anchor = "HBeginner-1"]]** ==== ))) | ||
4 | |||
5 | === **Beginner** === | ||
6 | |||
![]() |
2.1 | 7 | === [[Creating a simple cell optimisation>>https://github.com/BlueBrain/BluePyOpt/blob/master/examples/simplecell/simplecell.ipynb||rel=" noopener noreferrer" target="_blank"]] === |
![]() |
1.1 | 8 | |
![]() |
3.1 | 9 | **Level**: beginner(%%) **Type**: interactive tutorial |
![]() |
2.1 | 10 | |
![]() |
3.1 | 11 | This notebook will explain how to set up an optimisation of simple single compartmental cell with two free parameters that need to be optimised. As this optimisation is for example purpose only, no real experimental data is used in this notebook. |
![]() |
15.1 | 12 | === [[Optimisation using the CMA evolutionary strategy>>https://github.com/BlueBrain/BluePyOpt/blob/master/examples/cma_strategy/cma.ipynb||rel=" noopener noreferrer" target="_blank"]] === |
![]() |
2.1 | 13 | |
![]() |
15.1 | 14 | **Level**: beginner(%%) **Type**: interactive tutorial |
15 | |||
16 | This notebook will explain how to optimise a model using the covariance matrix adaptation (CMA) optimisation strategy. BluePyOpt includes two flavors of CMA: a single objective one and a hybrid single/multi objective one. | ||
![]() |
16.1 | 17 | === [[Optimising synaptic parameters>>https://github.com/BlueBrain/BluePyOpt/blob/master/examples/expsyn/ExpSyn.ipynb||rel=" noopener noreferrer" target="_blank"]] === |
![]() |
15.1 | 18 | |
![]() |
16.1 | 19 | **Level**: beginner(%%) **Type**: interactive tutorial |
20 | |||
21 | This notebook shows how the parameters of a NEURON point process (in this case a synapse), can be optimised using BluePyOpt. | ||
22 |