Wiki source code of BluePyOpt

Version 21.1 by abonard on 2025/04/10 15:11

Hide last authors
adavison 1.1 1
abonard 3.1 2
3 * ((( ==== **[[Beginner >>||anchor = "HBeginner-1"]]** ==== )))
4
abonard 17.1 5 * ((( ==== **[[Intermediate >>||anchor = "HIntermediate-1"]]** ==== )))
6
abonard 3.1 7 === **Beginner** ===
8
jessicamitchell 2.1 9 === [[Creating a simple cell optimisation>>https://github.com/BlueBrain/BluePyOpt/blob/master/examples/simplecell/simplecell.ipynb||rel=" noopener noreferrer" target="_blank"]] ===
adavison 1.1 10
abonard 3.1 11 **Level**: beginner(%%) **Type**: interactive tutorial
jessicamitchell 2.1 12
abonard 3.1 13 This notebook will explain how to set up an optimisation of simple single compartmental cell with two free parameters that need to be optimised. As this optimisation is for example purpose only, no real experimental data is used in this notebook.
abonard 15.1 14 === [[Optimisation using the CMA evolutionary strategy>>https://github.com/BlueBrain/BluePyOpt/blob/master/examples/cma_strategy/cma.ipynb||rel=" noopener noreferrer" target="_blank"]] ===
jessicamitchell 2.1 15
abonard 15.1 16 **Level**: beginner(%%) **Type**: interactive tutorial
17
18 This notebook will explain how to optimise a model using the covariance matrix adaptation (CMA) optimisation strategy. BluePyOpt includes two flavors of CMA: a single objective one and a hybrid single/multi objective one.
abonard 16.1 19 === [[Optimising synaptic parameters>>https://github.com/BlueBrain/BluePyOpt/blob/master/examples/expsyn/ExpSyn.ipynb||rel=" noopener noreferrer" target="_blank"]] ===
abonard 15.1 20
abonard 16.1 21 **Level**: beginner(%%) **Type**: interactive tutorial
22
23 This notebook shows how the parameters of a NEURON point process (in this case a synapse), can be optimised using BluePyOpt.
abonard 17.1 24 === **Intermediate** ===
abonard 16.1 25
abonard 17.1 26 === [[Creating an optimisation with meta parameters>>https://github.com/BlueBrain/BluePyOpt/blob/master/examples/metaparameters/metaparameters.ipynb||rel=" noopener noreferrer" target="_blank"]] ===
27
28 **Level**: intermediate(%%) **Type**: interactive tutorial
29
30 This notebook will explain how to set up an optimisation that uses metaparameters (parameters that control other parameters)
abonard 18.1 31 === [[Setup of a cell model with multi electrode simulation for local field potential recording>>https://github.com/BlueBrain/BluePyOpt/blob/master/examples/l5pc_lfpy/L5PC_LFPy.ipynb||rel=" noopener noreferrer" target="_blank"]] ===
abonard 17.1 32
abonard 18.1 33 **Level**: intermediate(%%) **Type**: interactive tutorial
34
35 This notebook will demonstrate how to instantiate a cell model and evaluator that include local field potential (LFP) computation and its recording using a simulated multi electrode array (MEA).
abonard 19.1 36 === [[Exporting a cell in the neuroml format and running it>>https://github.com/BlueBrain/BluePyOpt/blob/master/examples/neuroml/neuroml.ipynb||rel=" noopener noreferrer" target="_blank"]] ===
abonard 18.1 37
abonard 19.1 38 **Level**: intermediate(%%) **Type**: interactive tutorial
39
40 In this tutorial we will go over how to export a cell to neuroml, create a LEMS simulation able to run the neuroml cell and then how to run the simulation.
abonard 20.1 41 === [[Tsodyks-Markram model of short-term synaptic plasticity>>https://github.com/BlueBrain/BluePyOpt/blob/master/examples/tsodyksmarkramstp/tsodyksmarkramstp.ipynb||rel=" noopener noreferrer" target="_blank"]] ===
abonard 19.1 42
abonard 20.1 43 **Level**: intermediate(%%) **Type**: interactive tutorial
44
45 In this notebook we demonstrate how to fit the parameters of the Tsodyks-Markram model to a given in vitro somatic recording. The in vitro trace used here shows a typical L5TTPC-L5TTPC depressing connection, kindly provided by Rodrigo Perin (EPFL).
abonard 21.1 46 === [[Optimization of burst and tonic firing in thalamo-cortical neurons>>https://github.com/BlueBrain/BluePyOpt/blob/master/examples/thalamocortical-cell/thalamocortical-cell_opt.ipynb||rel=" noopener noreferrer" target="_blank"]] ===
abonard 20.1 47
abonard 21.1 48 **Level**: intermediate(%%) **Type**: interactive tutorial
49
50 In this tutorial we will go over how to set up the cell model and the cell evaluator, run an optimisation and how to analyse optimisation results.
51