Wiki source code of BluePyOpt

Version 53.1 by abonard on 2025/06/13 16:05

Hide last authors
adavison 1.1 1
abonard 3.1 2
3 * ((( ==== **[[Beginner >>||anchor = "HBeginner-1"]]** ==== )))
4
abonard 50.1 5 * ((( ==== **[[Intermediate >>||anchor = "HIntermediate-1"]]** ==== )))
6
abonard 3.1 7 === **Beginner** ===
8
jessicamitchell 2.1 9 === [[Creating a simple cell optimisation>>https://github.com/BlueBrain/BluePyOpt/blob/master/examples/simplecell/simplecell.ipynb||rel=" noopener noreferrer" target="_blank"]] ===
adavison 1.1 10
abonard 3.1 11 **Level**: beginner(%%) **Type**: interactive tutorial
jessicamitchell 2.1 12
abonard 3.1 13 This notebook will explain how to set up an optimisation of simple single compartmental cell with two free parameters that need to be optimised. As this optimisation is for example purpose only, no real experimental data is used in this notebook.
abonard 48.1 14 === [[Optimisation using the CMA evolutionary strategy>>https://github.com/BlueBrain/BluePyOpt/blob/master/examples/cma_strategy/cma.ipynb||rel=" noopener noreferrer" target="_blank"]] ===
jessicamitchell 2.1 15
abonard 48.1 16 **Level**: beginner(%%) **Type**: interactive tutorial
17
18 This notebook will explain how to optimise a model using the covariance matrix adaptation (CMA) optimisation strategy. BluePyOpt includes two flavors of CMA: a single objective one and a hybrid single/multi objective one.
abonard 49.1 19 === [[Optimising synaptic parameters>>https://github.com/BlueBrain/BluePyOpt/blob/master/examples/expsyn/ExpSyn.ipynb||rel=" noopener noreferrer" target="_blank"]] ===
abonard 48.1 20
abonard 49.1 21 **Level**: beginner(%%) **Type**: interactive tutorial
22
23 This notebook shows how the parameters of a NEURON point process (in this case a synapse), can be optimised using BluePyOpt.
abonard 50.1 24 === **Intermediate** ===
abonard 49.1 25
abonard 50.1 26 === [[Creating an optimisation with meta parameters>>https://github.com/BlueBrain/BluePyOpt/blob/master/examples/metaparameters/metaparameters.ipynb||rel=" noopener noreferrer" target="_blank"]] ===
27
28 **Level**: intermediate(%%) **Type**: interactive tutorial
29
30 This notebook will explain how to set up an optimisation that uses metaparameters (parameters that control other parameters)
abonard 51.1 31 === [[Setup of a cell model with multi electrode simulation for local field potential recording>>https://github.com/BlueBrain/BluePyOpt/blob/master/examples/l5pc_lfpy/L5PC_LFPy.ipynb||rel=" noopener noreferrer" target="_blank"]] ===
abonard 50.1 32
abonard 51.1 33 **Level**: intermediate(%%) **Type**: interactive tutorial
34
35 This notebook will demonstrate how to instantiate a cell model and evaluator that include local field potential (LFP) computation and its recording using a simulated multi electrode array (MEA).
abonard 52.1 36 === [[Exporting a cell in the neuroml format and running it>>https://github.com/BlueBrain/BluePyOpt/blob/master/examples/neuroml/neuroml.ipynb||rel=" noopener noreferrer" target="_blank"]] ===
abonard 51.1 37
abonard 52.1 38 **Level**: intermediate(%%) **Type**: interactive tutorial
39
40 In this tutorial we will go over how to export a cell to neuroml, create a LEMS simulation able to run the neuroml cell and then how to run the simulation.
abonard 53.1 41 === [[Tsodyks-Markram model of short-term synaptic plasticity>>https://github.com/BlueBrain/BluePyOpt/blob/master/examples/tsodyksmarkramstp/tsodyksmarkramstp.ipynb||rel=" noopener noreferrer" target="_blank"]] ===
abonard 52.1 42
abonard 53.1 43 **Level**: intermediate(%%) **Type**: interactive tutorial
44
45 In this notebook we demonstrate how to fit the parameters of the Tsodyks-Markram model to a given in vitro somatic recording. The in vitro trace used here shows a typical L5TTPC-L5TTPC depressing connection, kindly provided by Rodrigo Perin (EPFL).
46