Attention: The EBRAINS Wiki will be down Tuesday 14th October, from 18:00 CEST (my timezone) for up to 30 minutes due to an upgrade


Wiki source code of BluePyOpt

Version 63.1 by abonard on 2025/09/16 10:47

Hide last authors
adavison 1.1 1
abonard 3.1 2
3 * ((( ==== **[[Beginner >>||anchor = "HBeginner-1"]]** ==== )))
4
abonard 61.1 5 * ((( ==== **[[Intermediate >>||anchor = "HIntermediate-1"]]** ==== )))
6
abonard 3.1 7 === **Beginner** ===
8
jessicamitchell 2.1 9 === [[Creating a simple cell optimisation>>https://github.com/BlueBrain/BluePyOpt/blob/master/examples/simplecell/simplecell.ipynb||rel=" noopener noreferrer" target="_blank"]] ===
adavison 1.1 10
abonard 3.1 11 **Level**: beginner(%%) **Type**: interactive tutorial
jessicamitchell 2.1 12
abonard 3.1 13 This notebook will explain how to set up an optimisation of simple single compartmental cell with two free parameters that need to be optimised. As this optimisation is for example purpose only, no real experimental data is used in this notebook.
abonard 59.1 14 === [[Optimisation using the CMA evolutionary strategy>>https://github.com/BlueBrain/BluePyOpt/blob/master/examples/cma_strategy/cma.ipynb||rel=" noopener noreferrer" target="_blank"]] ===
jessicamitchell 2.1 15
abonard 59.1 16 **Level**: beginner(%%) **Type**: interactive tutorial
17
18 This notebook will explain how to optimise a model using the covariance matrix adaptation (CMA) optimisation strategy. BluePyOpt includes two flavors of CMA: a single objective one and a hybrid single/multi objective one.
abonard 60.1 19 === [[Optimising synaptic parameters>>https://github.com/BlueBrain/BluePyOpt/blob/master/examples/expsyn/ExpSyn.ipynb||rel=" noopener noreferrer" target="_blank"]] ===
abonard 59.1 20
abonard 60.1 21 **Level**: beginner(%%) **Type**: interactive tutorial
22
23 This notebook shows how the parameters of a NEURON point process (in this case a synapse), can be optimised using BluePyOpt.
abonard 61.1 24 === **Intermediate** ===
abonard 60.1 25
abonard 61.1 26 === [[Creating an optimisation with meta parameters>>https://github.com/BlueBrain/BluePyOpt/blob/master/examples/metaparameters/metaparameters.ipynb||rel=" noopener noreferrer" target="_blank"]] ===
27
28 **Level**: intermediate(%%) **Type**: interactive tutorial
29
30 This notebook will explain how to set up an optimisation that uses metaparameters (parameters that control other parameters)
abonard 62.1 31 === [[Setup of a cell model with multi electrode simulation for local field potential recording>>https://github.com/BlueBrain/BluePyOpt/blob/master/examples/l5pc_lfpy/L5PC_LFPy.ipynb||rel=" noopener noreferrer" target="_blank"]] ===
abonard 61.1 32
abonard 62.1 33 **Level**: intermediate(%%) **Type**: interactive tutorial
34
35 This notebook will demonstrate how to instantiate a cell model and evaluator that include local field potential (LFP) computation and its recording using a simulated multi electrode array (MEA).
abonard 63.1 36 === [[Exporting a cell in the neuroml format and running it>>https://github.com/BlueBrain/BluePyOpt/blob/master/examples/neuroml/neuroml.ipynb||rel=" noopener noreferrer" target="_blank"]] ===
abonard 62.1 37
abonard 63.1 38 **Level**: intermediate(%%) **Type**: interactive tutorial
39
40 In this tutorial we will go over how to export a cell to neuroml, create a LEMS simulation able to run the neuroml cell and then how to run the simulation.
41