From version 2.1
edited by jessicamitchell
on 2023/09/11 11:44
on 2023/09/11 11:44
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. jessicamitchell1 +XWiki.abonard - Content
-
... ... @@ -1,33 +2,26 @@ 1 -Available tutorials: 2 2 3 -=== [[Izhikevich tutorial>>https://nestml.readthedocs.io/en/latest/tutorials/izhikevich/nestml_izhikevich_tutorial.html||rel=" noopener noreferrer" target="_blank"]] === 4 4 5 - //Level:beginner//3 +* ((( ==== **[[Beginner >>||anchor = "HBeginner-1"]]** ==== ))) 6 6 7 -Learn how to write the Izhikevich spiking neuron model in NESTML. 8 -=== [[Active dendrite tutorial>>https://nestml.readthedocs.io/en/latest/tutorials/active_dendrite/nestml_active_dendrite_tutorial.html||rel=" noopener noreferrer" target="_blank"]] === 5 +* ((( ==== **[[Advanced >>||anchor = "HAdvanced-1"]]** ==== ))) 9 9 10 - //Level:advanced//7 +=== **Beginner** === 11 11 12 -Learn how to model a dendritic action potential in an existing NESTML neuron. 13 -=== [[Dopamine-modulated STDP synapse tutorial>>https://nestml.readthedocs.io/en/latest/tutorials/stdp_dopa_synapse/stdp_dopa_synapse.html||rel=" noopener noreferrer" target="_blank"]] === 9 +=== [[Creating neuron models – Spike-frequency adaptation (SFA)>>https://nestml.readthedocs.io/en/latest/tutorials/spike_frequency_adaptation/nestml_spike_frequency_adaptation_tutorial.html||rel=" noopener noreferrer" target="_blank"]] === 14 14 15 - //Level:advanced//11 +**Level**: beginner(%%) **Type**: interactive tutorial 16 16 17 - Adding dopaminemodulationtotheweight updaterule ofan STDP synapse allowsit toe usedin reinforcementlearningtasks. Thisallowsa network tolearnwhich of themanycues andactionsprecedingarewardshouldbe creditedforthereward.18 -=== [[ Ornstein-Uhlenbecknoise tutorial>>https://nestml.readthedocs.io/en/latest/tutorials/ornstein_uhlenbeck_noise/nestml_ou_noise_tutorial.html||rel=" noopener noreferrer" target="_blank"]] ===13 +Spike-frequency adaptation (SFA) is the empirically observed phenomenon where the firing rate of a neuron decreases for a sustained, constant stimulus. Learn how to model SFA using threshold adaptation and an adaptation current. 14 +=== [[Creating neuron models – Izhikevich tutorial>>https://nestml.readthedocs.io/en/latest/tutorials/izhikevich/nestml_izhikevich_tutorial.html||rel=" noopener noreferrer" target="_blank"]] === 19 19 20 - //Level:advanced//16 +**Level**: beginner(%%) **Type**: interactive tutorial 21 21 22 - ImplementtheOrnstein-UhlenbeckprocessinNESTMLanduseittoinjecta noiseurrentintoaneuron.23 -=== [[STDP synapse tutorial>>https://nestml.readthedocs.io/en/latest/tutorials/triplet_stdp_synapse/triplet_stdp_synapse.html||rel="noopener noreferrer" target="_blank"]]===18 +Learn how to start to use NESTML by writing the Izhikevich spiking neuron model in NESTML. 19 +=== **Advanced** === 24 24 25 - //Level:advanced//21 +=== [[Creating synapse models – Dopamine-modulated STDP synapse>>https://nestml.readthedocs.io/en/latest/tutorials/stdp_dopa_synapse/stdp_dopa_synapse.html||rel=" noopener noreferrer" target="_blank"]] === 26 26 27 -A triplet STDP rule is sensitive to third-order correlations of pre- and postsynaptic spike times, and accounts better for experimentally seen dependence on timing and frequency. 28 -=== [[STDP windows tutorial>>https://nestml.readthedocs.io/en/latest/tutorials/stdp_windows/stdp_windows.html||rel=" noopener noreferrer" target="_blank"]] === 23 +**Level**: advanced(%%) **Type**: interactive tutorial 29 29 30 - //Level:advanced//25 +Adding dopamine modulation to the weight update rule of an STDP synapse allows it to be used in reinforcement learning tasks. This allows a network to learn which of the many cues and actions preceding a reward should be credited for the reward. In this tutorial, a dopamine-modulated STDP model is created in NESTML, and we characterize the model before using it in a network (reinforcement) learning task. 31 31 32 -An STDP window describes how the strength of the synapse changes as a function of the relative timing of pre- and postsynaptic spikes. Several different STDP model variants with different window functions are implemented. 33 -