From version 2.1
edited by jessicamitchell
on 2023/09/11 11:44
on 2023/09/11 11:44
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. jessicamitchell1 +XWiki.abonard - Content
-
... ... @@ -1,33 +2,31 @@ 1 -Available tutorials: 2 2 3 -=== [[Izhikevich tutorial>>https://nestml.readthedocs.io/en/latest/tutorials/izhikevich/nestml_izhikevich_tutorial.html||rel=" noopener noreferrer" target="_blank"]] === 4 4 5 - //Level:beginner//3 +* ((( ==== **[[Beginner >>||anchor = "HBeginner-1"]]** ==== ))) 6 6 7 -Learn how to write the Izhikevich spiking neuron model in NESTML. 8 -=== [[Active dendrite tutorial>>https://nestml.readthedocs.io/en/latest/tutorials/active_dendrite/nestml_active_dendrite_tutorial.html||rel=" noopener noreferrer" target="_blank"]] === 5 +* ((( ==== **[[Advanced >>||anchor = "HAdvanced-1"]]** ==== ))) 9 9 10 - //Level:advanced//7 +=== **Beginner** === 11 11 12 -Learn how to model a dendritic action potential in an existing NESTML neuron. 13 -=== [[Dopamine-modulated STDP synapse tutorial>>https://nestml.readthedocs.io/en/latest/tutorials/stdp_dopa_synapse/stdp_dopa_synapse.html||rel=" noopener noreferrer" target="_blank"]] === 9 +=== [[Creating neuron models – Spike-frequency adaptation (SFA)>>https://nestml.readthedocs.io/en/latest/tutorials/spike_frequency_adaptation/nestml_spike_frequency_adaptation_tutorial.html||rel=" noopener noreferrer" target="_blank"]] === 14 14 15 - //Level:advanced//11 +**Level**: beginner(%%) **Type**: interactive tutorial 16 16 17 - Adding dopaminemodulationtotheweight updaterule ofan STDP synapse allowsit toe usedin reinforcementlearningtasks. Thisallowsa network tolearnwhich of themanycues andactionsprecedingarewardshouldbe creditedforthereward.18 -=== [[ Ornstein-Uhlenbecknoise tutorial>>https://nestml.readthedocs.io/en/latest/tutorials/ornstein_uhlenbeck_noise/nestml_ou_noise_tutorial.html||rel=" noopener noreferrer" target="_blank"]] ===13 +Spike-frequency adaptation (SFA) is the empirically observed phenomenon where the firing rate of a neuron decreases for a sustained, constant stimulus. Learn how to model SFA using threshold adaptation and an adaptation current. 14 +=== [[Creating neuron models – Izhikevich tutorial>>https://nestml.readthedocs.io/en/latest/tutorials/izhikevich/nestml_izhikevich_tutorial.html||rel=" noopener noreferrer" target="_blank"]] === 19 19 20 - //Level:advanced//16 +**Level**: beginner(%%) **Type**: interactive tutorial 21 21 22 - ImplementtheOrnstein-UhlenbeckprocessinNESTMLanduseittoinjecta noiseurrentintoaneuron.23 -=== [[STDP synapse tutorial>>https://nestml.readthedocs.io/en/latest/tutorials/triplet_stdp_synapse/triplet_stdp_synapse.html||rel="noopener noreferrer" target="_blank"]]===18 +Learn how to start to use NESTML by writing the Izhikevich spiking neuron model in NESTML. 19 +=== **Advanced** === 24 24 25 - //Level:advanced//21 +=== [[Creating synapse models – Dopamine-modulated STDP synapse>>https://nestml.readthedocs.io/en/latest/tutorials/stdp_dopa_synapse/stdp_dopa_synapse.html||rel=" noopener noreferrer" target="_blank"]] === 26 26 27 -A triplet STDP rule is sensitive to third-order correlations of pre- and postsynaptic spike times, and accounts better for experimentally seen dependence on timing and frequency. 28 -=== [[STDP windows tutorial>>https://nestml.readthedocs.io/en/latest/tutorials/stdp_windows/stdp_windows.html||rel=" noopener noreferrer" target="_blank"]] === 23 +**Level**: advanced(%%) **Type**: interactive tutorial 29 29 30 -//Level: advanced// 25 +Adding dopamine modulation to the weight update rule of an STDP synapse allows it to be used in reinforcement learning tasks. This allows a network to learn which of the many cues and actions preceding a reward should be credited for the reward. In this tutorial, a dopamine-modulated STDP model is created in NESTML, and we characterize the model before using it in a network (reinforcement) learning task. 26 +=== [[Creating synapse models – Triplet STDP synapse>>https://nestml.readthedocs.io/en/latest/tutorials/triplet_stdp_synapse/triplet_stdp_synapse.html||rel=" noopener noreferrer" target="_blank"]] === 31 31 32 - An STDP window describeshow the strength of the synapse changes as a function of therelative timing of pre- andpostsynaptic spikes.Several differentSTDP model variants with differentwindow functions areimplemented.28 +**Level**: advanced(%%) **Type**: interactive tutorial 33 33 30 +A triplet STDP rule is sensitive to third-order correlations of pre- and postsynaptic spike times, and accounts better for experimentally seen dependence on timing and frequency. In this tutorial, we will learn to formulate triplet rule (which considers sets of three spikes, i.e., two presynaptic and one postsynaptic spikes or two postsynaptic and one presynaptic spikes) for Spike Timing-Dependent Plasticity (STDP) learning model using NESTML and simulate it with NEST simulator. 31 +