Changes for page Neuron

Last modified by abonard on 2025/04/10 15:17

From version 106.1
edited by abonard
on 2025/04/10 15:16
Change comment: There is no comment for this version
To version 96.1
edited by abonard
on 2025/04/10 15:16
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -170,50 +170,4 @@
170 170  **Level**: advanced(%%) **Type**: interactive tutorial
171 171  
172 172  How to make one or more biophysical properties vary systematically with position in space.
173 -=== [[Using Import3D – An introduction>>https://neuron.yale.edu/neuron/docs/import3d||rel=" noopener noreferrer" target="_blank"]] ===
174 174  
175 -**Level**: advanced(%%) **Type**: user documentation
176 -
177 -Import3D tool can be used to translate common varieties of cellular morphometric data into a CellBuilder that specifies the anatomical properties of a model neuron. This Tutorial will guide you in reading a morphometric data file and converting it to a NEURON model as well as
178 -exploring morphometric data and fixing problems.
179 -=== [[Segmenting a simulation of a model network – 1. Implement and test the computational model itself>>https://neuron.yale.edu/neuron/docs/1-implement-and-test-computational-model-itself-0||rel=" noopener noreferrer" target="_blank"]] ===
180 -
181 -**Level**: advanced(%%) **Type**: user documentation
182 -
183 -=== [[Segmenting a simulation of a model network – 2. Run a "complete" simulation and save its results>>https://neuron.yale.edu/neuron/docs/2-run-complete-simulation-and-save-its-results-0||rel=" noopener noreferrer" target="_blank"]] ===
184 -
185 -**Level**: advanced(%%) **Type**: user documentation
186 -
187 -=== [[Segmenting a simulation of a model cell – 2. Run a "complete" simulation and save its results>>https://neuron.yale.edu/neuron/docs/2-run-complete-simulation-and-save-its-results||rel=" noopener noreferrer" target="_blank"]] ===
188 -
189 -**Level**: advanced(%%) **Type**: user documentation
190 -
191 -=== [[Segmenting a simulation of a model cell – 1. Implement and test the computational model itself>>https://neuron.yale.edu/neuron/docs/1-implement-and-test-computational-model-itself||rel=" noopener noreferrer" target="_blank"]] ===
192 -
193 -**Level**: advanced(%%) **Type**: user documentation
194 -
195 -=== [[Using NEURON's Optimization Tools – Tutorial 2 : Fitting a model to data>>https://neuron.yale.edu/neuron/static/docs/optimiz/model/outline.html||rel=" noopener noreferrer" target="_blank"]] ===
196 -
197 -**Level**: advanced(%%) **Type**: user documentation
198 -
199 -We will go over how to create an "unoptimized" model, set up a current clamp experiment on this model, configure a MultipleRunFitter to do a "run fitness" optimization, load the Experimental Data into the iclamp Run Fitness Generator, specify the parameters that will be adjusted and finally perform the optimization.
200 -=== [[Reaction-Diffusion – Hodgkin-Huxley using rxd>>https://neuron.yale.edu/neuron/docs/hodgkin-huxley-using-rxd||rel=" noopener noreferrer" target="_blank"]] ===
201 -
202 -**Level**: advanced(%%) **Type**: interactive tutorial
203 -
204 -In this tutorial you will learn how to set the proper parameters for the Hodgkin–Huxley model in NEURON.
205 -=== [[Using the CellBuilder – Creating a stylised ("stick-figure") model cell>>https://neuron.yale.edu/neuron/static/docs/cbtut/stylized/outline.html||rel=" noopener noreferrer" target="_blank"]] ===
206 -
207 -**Level**: advanced(%%) **Type**: -
208 -
209 -Learn how to build an extremely simplified model of a pyramidal cell.
210 -=== [[Ball and Stick model part 2>>https://neuron.yale.edu/neuron/docs/ball-and-stick-model-part-2||rel=" noopener noreferrer" target="_blank"]] ===
211 -
212 -**Level**: advanced(%%) **Type**: user documentation
213 -
214 -=== [[Reaction-Diffusion Example – Circadian rhythm>>https://neuron.yale.edu/neuron/docs/example-circadian-rhythm||rel=" noopener noreferrer" target="_blank"]] ===
215 -
216 -**Level**: advanced(%%) **Type**: user documentation
217 -
218 -Here we develop a NEURON implementation of the Leloup-Goldbeter model for circadian rhythms in Drosophila. In this example NEURON's h library and its standard run system are being used as well as matplotlib to plot concentrations of circadian proteins over time.
219 -