... |
... |
@@ -233,4 +233,33 @@ |
233 |
233 |
|
234 |
234 |
**Level**: advanced(%%) **Type**: user documentation |
235 |
235 |
|
|
236 |
+=== [[Using NEURON's Optimization Tools – Tutorial 1 : Fitting a function to data>>https://neuron.yale.edu/neuron/static/docs/optimiz/func/outline.html||rel=" noopener noreferrer" target="_blank"]] === |
236 |
236 |
|
|
238 |
+**Level**: advanced(%%) **Type**: user documentation |
|
239 |
+ |
|
240 |
+We will look into how to bring up a Multiple Run Fitter, load the Experimental Data into the Multiple Run Fitter, specify the function we want to optimize, specify the parameters that will be adjusted, specify the criteria we want the function to satisfy and finally perform the optimization. |
|
241 |
+=== [[Ball and Stick model part 4>>https://neuron.yale.edu/neuron/docs/ball-and-stick-model-part-4||rel=" noopener noreferrer" target="_blank"]] === |
|
242 |
+ |
|
243 |
+**Level**: advanced(%%) **Type**: user documentation |
|
244 |
+ |
|
245 |
+=== [[Reaction-Diffusion>>https://neuron.yale.edu/neuron/docs/reaction-diffusion||rel=" noopener noreferrer" target="_blank"]] === |
|
246 |
+ |
|
247 |
+**Level**: advanced(%%) **Type**: interactive tutorial |
|
248 |
+ |
|
249 |
+In this tutorial you will learn how to implement cell signalling function in the reaction-diffusion system by characterising your problems by the answers to three questions: (1) Where do the dynamics occur, (2) Who are the actors, and (3) How do they interact? |
|
250 |
+=== [[Creating a stylized ("stick figure") model cell>>https://neuron.yale.edu/neuron/static/docs/cbtut/stylized/outline.html||rel=" noopener noreferrer" target="_blank"]] === |
|
251 |
+ |
|
252 |
+**Level**: advanced(%%) **Type**: user documentation |
|
253 |
+ |
|
254 |
+Our goal in this tutorial is to build an extremely simplified model of a pyramidal cell using the CellBuilder, a powerful and convenient tool for constructing and managing models of individual neurons. We will be looking into setting up model topology, grouping sections with shared properties into subsets, assigning geometric properties to subsets or individual sections, and specifying a discretization strategy, as well as assigning biophysical properties to subsets or individual sections. |
|
255 |
+=== [[Randomness in NEURON models– Source code that demonstrates the problem>>https://neuron.yale.edu/neuron/docs/source-code-demonstrates-problem||rel=" noopener noreferrer" target="_blank"]] === |
|
256 |
+ |
|
257 |
+**Level**: advanced(%%) **Type**: user documentation |
|
258 |
+ |
|
259 |
+The tutorial will show you how to declare important constants (model parameters and simulation parameters), load files that other stuff will depend on, create the model itself (just a collection of cells that spike at random times), specify instrumentation (in this case, recording of spike times), specify simulation control and execute one or more simulations with various model parameters in the source code. |
|
260 |
+=== [[Using the Channel Builder – Creating a model of stochastic channel gating>>https://neuron.yale.edu/neuron/static/docs/chanlbild/stochastic/outline.html||rel=" noopener noreferrer" target="_blank"]] === |
|
261 |
+ |
|
262 |
+**Level**: advanced(%%) **Type**: interactive tutorial |
|
263 |
+ |
|
264 |
+Given a Channel Builder that implements a deterministic channel specified by a kinetic scheme, we create a new one that implements stochastic gating. |
|
265 |
+ |