Changes for page Neuron

Last modified by abonard on 2025/04/10 15:17

From version 12.1
edited by abonard
on 2025/04/10 15:07
Change comment: There is no comment for this version
To version 20.1
edited by abonard
on 2025/04/10 15:07
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -59,4 +59,47 @@
59 59  **Level**: advanced(%%) **Type**: -
60 60  
61 61  Using NEURON Radial diffusion can be implemented in rxd using multicompartment reactions. By creating a series of shells and borders with reactions between them dependent the diffusion coefficient.
62 +=== [[Reaction-Diffusion Example – Calcium Wave>>https://neuron.yale.edu/neuron/docs/reaction-diffusion-calcium-wave||rel=" noopener noreferrer" target="_blank"]] ===
62 62  
64 +**Level**: advanced(%%) **Type**: interactive tutorial
65 +
66 +The model presented in this tutorial generates Ca2+ waves and is a simplification of the model we used in Neymotin et al., 2015.
67 +=== [[Reaction-Diffusion – 3D/Hybrid Intracellular Tutorial>>https://neuron.yale.edu/neuron/docs/3dhybrid-intracellular-tutorial||rel=" noopener noreferrer" target="_blank"]] ===
68 +
69 +**Level**: advanced(%%) **Type**: interactive tutorial
70 +
71 +This tutorial provides an overview of how to set up a simple travelling wave in both cases.
72 +=== [[Reaction-Diffusion – Initialization strategies>>https://neuron.yale.edu/neuron/docs/initialization-strategies||rel=" noopener noreferrer" target="_blank"]] ===
73 +
74 +**Level**: advanced(%%) **Type**: interactive tutorial
75 +
76 +In this tutorial you will learn how to implement cell signalling function in the reaction-diffusion system by characterising your problems by the answers to three questions: (1) Where do the dynamics occur, (2) Who are the actors, and (3) How do they interact?
77 +=== [[Ball and Stick model part 3>>https://neuron.yale.edu/neuron/docs/ball-and-stick-model-part-3||rel=" noopener noreferrer" target="_blank"]] ===
78 +
79 +**Level**: advanced(%%) **Type**: user documentation
80 +
81 +=== [[Using the CellBuilder – Introduction>>https://neuron.yale.edu/neuron/static/docs/cbtut/main.html||rel=" noopener noreferrer" target="_blank"]] ===
82 +
83 +**Level**: advanced(%%) **Type**: interactive tutorial
84 +
85 +The following tutorials show how to use the CellBuilder, a powerful and convenient tool for constructing and managing models of individual neurons. It breaks the job of model specification into a sequence of tasks:
86 +1. Setting up model topology (branching pattern).
87 +2. Grouping sections with shared properties into subsets.
88 +3. Assigning geometric properties (length, diameter) to subsets or individual sections, and specifying a discretization strategy (i.e. how to set nseg).
89 +4. Assigning biophysical properties (Ra, cm, ion channels, buffers, pumps, etc.) to subsets or individual sections.
90 +=== [[Using Import3D – Exploring morphometric data and fixing problems>>https://neuron.yale.edu/neuron/docs/import3d/fix_problems||rel=" noopener noreferrer" target="_blank"]] ===
91 +
92 +**Level**: advanced(%%) **Type**: user documentation
93 +
94 +Import3D tool can be used to translate common varieties of cellular morphometric data into a CellBuilder that specifies the anatomical properties of a model neuron. This Tutorial will guide you through how to fix problems in your morphometric data.
95 +=== [[Randomness in NEURON models– The solution>>https://neuron.yale.edu/neuron/docs/solution||rel=" noopener noreferrer" target="_blank"]] ===
96 +
97 +**Level**: advanced(%%) **Type**: user documentation
98 +
99 +In this part of the tutorial we will show you how to give NetStim its own random number generator.
100 +=== [[Segmentation intro: Dealing with simulations that generate a lot of data>>https://neuron.yale.edu/neuron/docs/dealing-simulations-generate-lot-data||rel=" noopener noreferrer" target="_blank"]] ===
101 +
102 +**Level**: advanced(%%) **Type**: user documentation
103 +
104 +How to deal with simulations that generate a lot of data that must be saved? We will showcase different approaches.
105 +