| ... |
... |
@@ -69,93 +69,4 @@ |
| 69 |
69 |
**Level**: advanced(%%) **Type**: interactive tutorial |
| 70 |
70 |
|
| 71 |
71 |
This tutorial provides an overview of how to set up a simple travelling wave in both cases. |
| 72 |
|
-=== [[Reaction-Diffusion – Initialization strategies>>https://neuron.yale.edu/neuron/docs/initialization-strategies||rel=" noopener noreferrer" target="_blank"]] === |
| 73 |
73 |
|
| 74 |
|
-**Level**: advanced(%%) **Type**: interactive tutorial |
| 75 |
|
- |
| 76 |
|
-In this tutorial you will learn how to implement cell signalling function in the reaction-diffusion system by characterising your problems by the answers to three questions: (1) Where do the dynamics occur, (2) Who are the actors, and (3) How do they interact? |
| 77 |
|
-=== [[Ball and Stick model part 3>>https://neuron.yale.edu/neuron/docs/ball-and-stick-model-part-3||rel=" noopener noreferrer" target="_blank"]] === |
| 78 |
|
- |
| 79 |
|
-**Level**: advanced(%%) **Type**: user documentation |
| 80 |
|
- |
| 81 |
|
-=== [[Using the CellBuilder – Introduction>>https://neuron.yale.edu/neuron/static/docs/cbtut/main.html||rel=" noopener noreferrer" target="_blank"]] === |
| 82 |
|
- |
| 83 |
|
-**Level**: advanced(%%) **Type**: interactive tutorial |
| 84 |
|
- |
| 85 |
|
-The following tutorials show how to use the CellBuilder, a powerful and convenient tool for constructing and managing models of individual neurons. It breaks the job of model specification into a sequence of tasks: |
| 86 |
|
-1. Setting up model topology (branching pattern). |
| 87 |
|
-2. Grouping sections with shared properties into subsets. |
| 88 |
|
-3. Assigning geometric properties (length, diameter) to subsets or individual sections, and specifying a discretization strategy (i.e. how to set nseg). |
| 89 |
|
-4. Assigning biophysical properties (Ra, cm, ion channels, buffers, pumps, etc.) to subsets or individual sections. |
| 90 |
|
-=== [[Using Import3D – Exploring morphometric data and fixing problems>>https://neuron.yale.edu/neuron/docs/import3d/fix_problems||rel=" noopener noreferrer" target="_blank"]] === |
| 91 |
|
- |
| 92 |
|
-**Level**: advanced(%%) **Type**: user documentation |
| 93 |
|
- |
| 94 |
|
-Import3D tool can be used to translate common varieties of cellular morphometric data into a CellBuilder that specifies the anatomical properties of a model neuron. This Tutorial will guide you through how to fix problems in your morphometric data. |
| 95 |
|
-=== [[Randomness in NEURON models– The solution>>https://neuron.yale.edu/neuron/docs/solution||rel=" noopener noreferrer" target="_blank"]] === |
| 96 |
|
- |
| 97 |
|
-**Level**: advanced(%%) **Type**: user documentation |
| 98 |
|
- |
| 99 |
|
-In this part of the tutorial we will show you how to give NetStim its own random number generator. |
| 100 |
|
-=== [[Segmentation intro: Dealing with simulations that generate a lot of data>>https://neuron.yale.edu/neuron/docs/dealing-simulations-generate-lot-data||rel=" noopener noreferrer" target="_blank"]] === |
| 101 |
|
- |
| 102 |
|
-**Level**: advanced(%%) **Type**: user documentation |
| 103 |
|
- |
| 104 |
|
-How to deal with simulations that generate a lot of data that must be saved? We will showcase different approaches. |
| 105 |
|
-=== [[Using the Channel Builder – Creating a channel from an HH-style specification>>https://neuron.yale.edu/neuron/static/docs/chanlbild/hhstyle/outline.html||rel=" noopener noreferrer" target="_blank"]] === |
| 106 |
|
- |
| 107 |
|
-**Level**: advanced(%%) **Type**: interactive tutorial |
| 108 |
|
- |
| 109 |
|
-Our goal is to implement a new voltage-gated macroscopic current whose properties are described by HH-style equations. |
| 110 |
|
-=== [[Using the Channel Builder – Creating a channel from a kinetic scheme specification>>https://neuron.yale.edu/neuron/static/docs/chanlbild/kinetic/outline.html||rel=" noopener noreferrer" target="_blank"]] === |
| 111 |
|
- |
| 112 |
|
-**Level**: advanced(%%) **Type**: interactive tutorial |
| 113 |
|
- |
| 114 |
|
-Here we will implement a new voltage-gated macroscopic current whose properties are described by a family of chemical reactions. |
| 115 |
|
-=== [[Randomness in NEURON models– Source code that demonstrates the solution>>https://neuron.yale.edu/neuron/docs/source-code-demonstrates-solution||rel=" noopener noreferrer" target="_blank"]] === |
| 116 |
|
- |
| 117 |
|
-**Level**: advanced(%%) **Type**: user documentation |
| 118 |
|
- |
| 119 |
|
-=== [[Using the Network Builder – Introduction to Network Construction>>https://neuron.yale.edu/neuron/static/docs/netbuild/intro.html||rel=" noopener noreferrer" target="_blank"]] === |
| 120 |
|
- |
| 121 |
|
-**Level**: advanced(%%) **Type**: user documentation |
| 122 |
|
- |
| 123 |
|
-=== [[Python introduction>>https://neuron.yale.edu/neuron/docs/python-introduction||rel=" noopener noreferrer" target="_blank"]] === |
| 124 |
|
- |
| 125 |
|
-**Level**: advanced(%%) **Type**: user documentation |
| 126 |
|
- |
| 127 |
|
-This page provides a brief introduction to Python syntax, Variables, Lists and Dicts, For loops and iterators, Functions, Classes, Importing modules, Writing and reading files with Pickling. |
| 128 |
|
-=== [[Reaction-Diffusion Example – RxD with MOD files>>https://neuron.yale.edu/neuron/docs/rxd-mod-files||rel=" noopener noreferrer" target="_blank"]] === |
| 129 |
|
- |
| 130 |
|
-**Level**: advanced(%%) **Type**: user documentation |
| 131 |
|
- |
| 132 |
|
-NEURON's reaction-diffusion infrastructure can be used to readily allow intracellular concentrations to respond to currents generated in MOD files. This example shows you a simple model with just a single point soma, of length and diameter 10 microns, with Hodgkin-Huxley kinetics, and dynamic sodium (declared using rxd but without any additional kinetics). |
| 133 |
|
-=== [[Segmenting a simulation of a model network - Introduction>>https://neuron.yale.edu/neuron/docs/segmenting-simulation-model-network||rel=" noopener noreferrer" target="_blank"]] === |
| 134 |
|
- |
| 135 |
|
-**Level**: advanced(%%) **Type**: user documentation |
| 136 |
|
- |
| 137 |
|
-=== [[Using the Network Builder – Tutorial 1: Making Networks of Artificial Neurons>>https://neuron.yale.edu/neuron/static/docs/netbuild/artnet/outline.html||rel=" noopener noreferrer" target="_blank"]] === |
| 138 |
|
- |
| 139 |
|
-**Level**: advanced(%%) **Type**: interactive tutorial |
| 140 |
|
- |
| 141 |
|
-Learn how to Artificial Integrate and Fire cell with a synapse that is driven by an afferent burst of spikes. |
| 142 |
|
-=== [[Reaction-Diffusion Example – Restricting a reaction to part of a region>>https://neuron.yale.edu/neuron/docs/example-restricting-reaction-part-region||rel=" noopener noreferrer" target="_blank"]] === |
| 143 |
|
- |
| 144 |
|
-**Level**: advanced(%%) **Type**: user documentation |
| 145 |
|
- |
| 146 |
|
-Implementation example for the restriction of the reaction to part of a region. |
| 147 |
|
-=== [[Segmenting a simulation of a model cell - Introduction>>https://neuron.yale.edu/neuron/docs/segmenting-simulation-model-cell||rel=" noopener noreferrer" target="_blank"]] === |
| 148 |
|
- |
| 149 |
|
-**Level**: advanced(%%) **Type**: user documentation |
| 150 |
|
- |
| 151 |
|
-=== [[Scripting NEURON basics>>https://neuron.yale.edu/neuron/docs/scripting-neuron-basics||rel=" noopener noreferrer" target="_blank"]] === |
| 152 |
|
- |
| 153 |
|
-**Level**: advanced(%%) **Type**: user documentation |
| 154 |
|
- |
| 155 |
|
-The objectives of this part of the tutorial are to get familiar with basic operations of NEURON using Python. In this worksheet we will: Create a passive cell membrane in NEURON. Create a synaptic stimulus onto the neuron. Modify parameters of the membrane and stimulus. Visualize results with bokeh. |
| 156 |
|
-=== [[Reaction-Diffusion – Thresholds>>https://neuron.yale.edu/neuron/docs/reaction-diffusion-thresholds||rel=" noopener noreferrer" target="_blank"]] === |
| 157 |
|
- |
| 158 |
|
-**Level**: advanced(%%) **Type**: interactive tutorial |
| 159 |
|
- |
| 160 |
|
-Learn how to scale reaction rates by a function of the form f(x) for suitably chosen a and m to approximately threshold them by a concentration. |
| 161 |
|
- |