| ... |
... |
@@ -165,41 +165,4 @@ |
| 165 |
165 |
We will touch upon the following subjects in this tutorial: |
| 166 |
166 |
How to create model specification code that employs randomization to avoid undesired correlations between parameters, and to produce a model cell or network that has the same architecture and biophysical properties, and generates the same simulation results regardless of whether it is run on serial or parallel hardware. |
| 167 |
167 |
How to generate spike streams or other signals that fluctuate in ways that are statistically independent of each other. |
| 168 |
|
-=== [[Using the CellBuilder– Specifying parameterized variation of biophysical properties>>https://neuron.yale.edu/neuron/static/docs/cbtut/parameterized/outline.html||rel=" noopener noreferrer" target="_blank"]] === |
| 169 |
169 |
|
| 170 |
|
-**Level**: advanced(%%) **Type**: interactive tutorial |
| 171 |
|
- |
| 172 |
|
-How to make one or more biophysical properties vary systematically with position in space. |
| 173 |
|
-=== [[Using Import3D – An introduction>>https://neuron.yale.edu/neuron/docs/import3d||rel=" noopener noreferrer" target="_blank"]] === |
| 174 |
|
- |
| 175 |
|
-**Level**: advanced(%%) **Type**: user documentation |
| 176 |
|
- |
| 177 |
|
-Import3D tool can be used to translate common varieties of cellular morphometric data into a CellBuilder that specifies the anatomical properties of a model neuron. This Tutorial will guide you in reading a morphometric data file and converting it to a NEURON model as well as |
| 178 |
|
-exploring morphometric data and fixing problems. |
| 179 |
|
-=== [[Segmenting a simulation of a model network – 1. Implement and test the computational model itself>>https://neuron.yale.edu/neuron/docs/1-implement-and-test-computational-model-itself-0||rel=" noopener noreferrer" target="_blank"]] === |
| 180 |
|
- |
| 181 |
|
-**Level**: advanced(%%) **Type**: user documentation |
| 182 |
|
- |
| 183 |
|
-=== [[Segmenting a simulation of a model network – 2. Run a "complete" simulation and save its results>>https://neuron.yale.edu/neuron/docs/2-run-complete-simulation-and-save-its-results-0||rel=" noopener noreferrer" target="_blank"]] === |
| 184 |
|
- |
| 185 |
|
-**Level**: advanced(%%) **Type**: user documentation |
| 186 |
|
- |
| 187 |
|
-=== [[Segmenting a simulation of a model cell – 2. Run a "complete" simulation and save its results>>https://neuron.yale.edu/neuron/docs/2-run-complete-simulation-and-save-its-results||rel=" noopener noreferrer" target="_blank"]] === |
| 188 |
|
- |
| 189 |
|
-**Level**: advanced(%%) **Type**: user documentation |
| 190 |
|
- |
| 191 |
|
-=== [[Segmenting a simulation of a model cell – 1. Implement and test the computational model itself>>https://neuron.yale.edu/neuron/docs/1-implement-and-test-computational-model-itself||rel=" noopener noreferrer" target="_blank"]] === |
| 192 |
|
- |
| 193 |
|
-**Level**: advanced(%%) **Type**: user documentation |
| 194 |
|
- |
| 195 |
|
-=== [[Using NEURON's Optimization Tools – Tutorial 2 : Fitting a model to data>>https://neuron.yale.edu/neuron/static/docs/optimiz/model/outline.html||rel=" noopener noreferrer" target="_blank"]] === |
| 196 |
|
- |
| 197 |
|
-**Level**: advanced(%%) **Type**: user documentation |
| 198 |
|
- |
| 199 |
|
-We will go over how to create an "unoptimized" model, set up a current clamp experiment on this model, configure a MultipleRunFitter to do a "run fitness" optimization, load the Experimental Data into the iclamp Run Fitness Generator, specify the parameters that will be adjusted and finally perform the optimization. |
| 200 |
|
-=== [[Reaction-Diffusion – Hodgkin-Huxley using rxd>>https://neuron.yale.edu/neuron/docs/hodgkin-huxley-using-rxd||rel=" noopener noreferrer" target="_blank"]] === |
| 201 |
|
- |
| 202 |
|
-**Level**: advanced(%%) **Type**: interactive tutorial |
| 203 |
|
- |
| 204 |
|
-In this tutorial you will learn how to set the proper parameters for the Hodgkin–Huxley model in NEURON. |
| 205 |
|
- |