| ... | 
        ... | 
                @@ -2,6 +2,8 @@ | 
      
              
                    | 2 | 
          2 | 
            | 
        
              
                    | 3 | 
          3 | 
           * ((( ====  **[[Beginner >>||anchor = "HBeginner-1"]]** ==== ))) | 
        
              
                    | 4 | 
          4 | 
            | 
        
              
                     | 
          5 | 
          +* ((( ==== **[[Advanced >>||anchor = "HAdvanced-1"]]** ==== ))) | 
        
              
                     | 
          6 | 
          + | 
        
              
                    | 5 | 
          5 | 
           === **Beginner** === | 
        
              
                    | 6 | 
          6 | 
            | 
        
              
                    | 7 | 
          7 | 
           === [[A NEURON Programming Tutorial - part C>>http://web.mit.edu/neuron_v7.4/nrntuthtml/tutorial/tutC.html||rel=" noopener noreferrer" target="_blank"]] === | 
        
                      
        | ... | 
        ... | 
                @@ -40,4 +40,127 @@ | 
      
              
                    | 40 | 
          40 | 
           **Level**: beginner(%%)  **Type**: interactive tutorial | 
        
              
                    | 41 | 
          41 | 
            | 
        
              
                    | 42 | 
          42 | 
           In this beginner tutorial you will learn how to make a simple model using hoc and how to use NEURON's graphical tools to create an interface for running simulations and to modify the model itself. | 
        
              
                     | 
          45 | 
          +=== [[The hoc programming language>>https://neuron.yale.edu/neuron/static/docs/programming/hoc_slides.pdf||rel=" noopener noreferrer" target="_blank"]] === | 
        
              
                    | 43 | 
          43 | 
            | 
        
              
                     | 
          47 | 
          +**Level**: beginner(%%)  **Type**: slide deck | 
        
              
                     | 
          48 | 
          + | 
        
              
                     | 
          49 | 
          +Slides from a presentation on hoc syntax. Clear and concise. Includes an example of program analysis (walkthrough of code for a model cell generated by the CellBuilder). | 
        
              
                     | 
          50 | 
          +=== [[A NEURON Programming Tutorial - Part E>>http://web.mit.edu/neuron_v7.4/nrntuthtml/tutorial/tutE.html||rel=" noopener noreferrer" target="_blank"]] === | 
        
              
                     | 
          51 | 
          + | 
        
              
                     | 
          52 | 
          +**Level**: beginner(%%)  **Type**: user documentation | 
        
              
                     | 
          53 | 
          + | 
        
              
                     | 
          54 | 
          +After this tutorial, students will be able to save data from the simulations and methods for increasing simulation speed. | 
        
              
                     | 
          55 | 
          +=== **Advanced** === | 
        
              
                     | 
          56 | 
          + | 
        
              
                     | 
          57 | 
          +=== [[Reaction-Diffusion – Radial Diffusion>>https://neuron.yale.edu/neuron/docs/radial-diffusion||rel=" noopener noreferrer" target="_blank"]] === | 
        
              
                     | 
          58 | 
          + | 
        
              
                     | 
          59 | 
          +**Level**: advanced(%%)  **Type**: - | 
        
              
                     | 
          60 | 
          + | 
        
              
                     | 
          61 | 
          +Using NEURON Radial diffusion can be implemented in rxd using multicompartment reactions. By creating a series of shells and borders with reactions between them dependent the diffusion coefficient. | 
        
              
                     | 
          62 | 
          +=== [[Reaction-Diffusion Example – Calcium Wave>>https://neuron.yale.edu/neuron/docs/reaction-diffusion-calcium-wave||rel=" noopener noreferrer" target="_blank"]] === | 
        
              
                     | 
          63 | 
          + | 
        
              
                     | 
          64 | 
          +**Level**: advanced(%%)  **Type**: interactive tutorial | 
        
              
                     | 
          65 | 
          + | 
        
              
                     | 
          66 | 
          +The model presented in this tutorial generates Ca2+ waves and is a simplification of the model we used in Neymotin et al., 2015. | 
        
              
                     | 
          67 | 
          +=== [[Reaction-Diffusion – 3D/Hybrid Intracellular Tutorial>>https://neuron.yale.edu/neuron/docs/3dhybrid-intracellular-tutorial||rel=" noopener noreferrer" target="_blank"]] === | 
        
              
                     | 
          68 | 
          + | 
        
              
                     | 
          69 | 
          +**Level**: advanced(%%)  **Type**: interactive tutorial | 
        
              
                     | 
          70 | 
          + | 
        
              
                     | 
          71 | 
          +This tutorial provides an overview of how to set up a simple travelling wave in both cases. | 
        
              
                     | 
          72 | 
          +=== [[Reaction-Diffusion – Initialization strategies>>https://neuron.yale.edu/neuron/docs/initialization-strategies||rel=" noopener noreferrer" target="_blank"]] === | 
        
              
                     | 
          73 | 
          + | 
        
              
                     | 
          74 | 
          +**Level**: advanced(%%)  **Type**: interactive tutorial | 
        
              
                     | 
          75 | 
          + | 
        
              
                     | 
          76 | 
          +In this tutorial you will learn how to implement cell signalling function in the reaction-diffusion system by characterising your problems by the answers to three questions: (1) Where do the dynamics occur, (2) Who are the actors, and (3) How do they interact? | 
        
              
                     | 
          77 | 
          +=== [[Ball and Stick model part 3>>https://neuron.yale.edu/neuron/docs/ball-and-stick-model-part-3||rel=" noopener noreferrer" target="_blank"]] === | 
        
              
                     | 
          78 | 
          + | 
        
              
                     | 
          79 | 
          +**Level**: advanced(%%)  **Type**: user documentation | 
        
              
                     | 
          80 | 
          + | 
        
              
                     | 
          81 | 
          +=== [[Using the CellBuilder – Introduction>>https://neuron.yale.edu/neuron/static/docs/cbtut/main.html||rel=" noopener noreferrer" target="_blank"]] === | 
        
              
                     | 
          82 | 
          + | 
        
              
                     | 
          83 | 
          +**Level**: advanced(%%)  **Type**: interactive tutorial | 
        
              
                     | 
          84 | 
          + | 
        
              
                     | 
          85 | 
          +The following tutorials show how to use the CellBuilder, a powerful and convenient tool for constructing and managing models of individual neurons. It breaks the job of model specification into a sequence of tasks: | 
        
              
                     | 
          86 | 
          +1. Setting up model topology (branching pattern). | 
        
              
                     | 
          87 | 
          +2. Grouping sections with shared properties into subsets. | 
        
              
                     | 
          88 | 
          +3. Assigning geometric properties (length, diameter) to subsets or individual sections, and specifying a discretization strategy (i.e. how to set nseg). | 
        
              
                     | 
          89 | 
          +4. Assigning biophysical properties (Ra, cm, ion channels, buffers, pumps, etc.) to subsets or individual sections. | 
        
              
                     | 
          90 | 
          +=== [[Using Import3D – Exploring morphometric data and fixing problems>>https://neuron.yale.edu/neuron/docs/import3d/fix_problems||rel=" noopener noreferrer" target="_blank"]] === | 
        
              
                     | 
          91 | 
          + | 
        
              
                     | 
          92 | 
          +**Level**: advanced(%%)  **Type**: user documentation | 
        
              
                     | 
          93 | 
          + | 
        
              
                     | 
          94 | 
          +Import3D tool can be used to translate common varieties of cellular morphometric data into a CellBuilder that specifies the anatomical properties of a model neuron. This Tutorial will guide you through how to fix problems in your morphometric data. | 
        
              
                     | 
          95 | 
          +=== [[Randomness in NEURON models– The solution>>https://neuron.yale.edu/neuron/docs/solution||rel=" noopener noreferrer" target="_blank"]] === | 
        
              
                     | 
          96 | 
          + | 
        
              
                     | 
          97 | 
          +**Level**: advanced(%%)  **Type**: user documentation | 
        
              
                     | 
          98 | 
          + | 
        
              
                     | 
          99 | 
          +In this part of the tutorial we will show you how to give NetStim its own random number generator. | 
        
              
                     | 
          100 | 
          +=== [[Segmentation intro: Dealing with simulations that generate a lot of data>>https://neuron.yale.edu/neuron/docs/dealing-simulations-generate-lot-data||rel=" noopener noreferrer" target="_blank"]] === | 
        
              
                     | 
          101 | 
          + | 
        
              
                     | 
          102 | 
          +**Level**: advanced(%%)  **Type**: user documentation | 
        
              
                     | 
          103 | 
          + | 
        
              
                     | 
          104 | 
          +How to deal with simulations that generate a lot of data that must be saved? We will showcase different approaches. | 
        
              
                     | 
          105 | 
          +=== [[Using the Channel Builder – Creating a channel from an HH-style specification>>https://neuron.yale.edu/neuron/static/docs/chanlbild/hhstyle/outline.html||rel=" noopener noreferrer" target="_blank"]] === | 
        
              
                     | 
          106 | 
          + | 
        
              
                     | 
          107 | 
          +**Level**: advanced(%%)  **Type**: interactive tutorial | 
        
              
                     | 
          108 | 
          + | 
        
              
                     | 
          109 | 
          +Our goal is to implement a new voltage-gated macroscopic current whose properties are described by HH-style equations. | 
        
              
                     | 
          110 | 
          +=== [[Using the Channel Builder – Creating a channel from a kinetic scheme specification>>https://neuron.yale.edu/neuron/static/docs/chanlbild/kinetic/outline.html||rel=" noopener noreferrer" target="_blank"]] === | 
        
              
                     | 
          111 | 
          + | 
        
              
                     | 
          112 | 
          +**Level**: advanced(%%)  **Type**: interactive tutorial | 
        
              
                     | 
          113 | 
          + | 
        
              
                     | 
          114 | 
          +Here we will implement a new voltage-gated macroscopic current whose properties are described by a family of chemical reactions. | 
        
              
                     | 
          115 | 
          +=== [[Randomness in NEURON models– Source code that demonstrates the solution>>https://neuron.yale.edu/neuron/docs/source-code-demonstrates-solution||rel=" noopener noreferrer" target="_blank"]] === | 
        
              
                     | 
          116 | 
          + | 
        
              
                     | 
          117 | 
          +**Level**: advanced(%%)  **Type**: user documentation | 
        
              
                     | 
          118 | 
          + | 
        
              
                     | 
          119 | 
          +=== [[Using the Network Builder – Introduction to Network Construction>>https://neuron.yale.edu/neuron/static/docs/netbuild/intro.html||rel=" noopener noreferrer" target="_blank"]] === | 
        
              
                     | 
          120 | 
          + | 
        
              
                     | 
          121 | 
          +**Level**: advanced(%%)  **Type**: user documentation | 
        
              
                     | 
          122 | 
          + | 
        
              
                     | 
          123 | 
          +=== [[Python introduction>>https://neuron.yale.edu/neuron/docs/python-introduction||rel=" noopener noreferrer" target="_blank"]] === | 
        
              
                     | 
          124 | 
          + | 
        
              
                     | 
          125 | 
          +**Level**: advanced(%%)  **Type**: user documentation | 
        
              
                     | 
          126 | 
          + | 
        
              
                     | 
          127 | 
          +This page provides a brief introduction to Python syntax, Variables, Lists and Dicts, For loops and iterators, Functions, Classes, Importing modules, Writing and reading files with Pickling. | 
        
              
                     | 
          128 | 
          +=== [[Reaction-Diffusion Example – RxD with MOD files>>https://neuron.yale.edu/neuron/docs/rxd-mod-files||rel=" noopener noreferrer" target="_blank"]] === | 
        
              
                     | 
          129 | 
          + | 
        
              
                     | 
          130 | 
          +**Level**: advanced(%%)  **Type**: user documentation | 
        
              
                     | 
          131 | 
          + | 
        
              
                     | 
          132 | 
          +NEURON's reaction-diffusion infrastructure can be used to readily allow intracellular concentrations to respond to currents generated in MOD files. This example shows you a simple model with just a single point soma, of length and diameter 10 microns, with Hodgkin-Huxley kinetics, and dynamic sodium (declared using rxd but without any additional kinetics). | 
        
              
                     | 
          133 | 
          +=== [[Segmenting a simulation of a model network - Introduction>>https://neuron.yale.edu/neuron/docs/segmenting-simulation-model-network||rel=" noopener noreferrer" target="_blank"]] === | 
        
              
                     | 
          134 | 
          + | 
        
              
                     | 
          135 | 
          +**Level**: advanced(%%)  **Type**: user documentation | 
        
              
                     | 
          136 | 
          + | 
        
              
                     | 
          137 | 
          +=== [[Using the Network Builder – Tutorial 1: Making Networks of Artificial Neurons>>https://neuron.yale.edu/neuron/static/docs/netbuild/artnet/outline.html||rel=" noopener noreferrer" target="_blank"]] === | 
        
              
                     | 
          138 | 
          + | 
        
              
                     | 
          139 | 
          +**Level**: advanced(%%)  **Type**: interactive tutorial | 
        
              
                     | 
          140 | 
          + | 
        
              
                     | 
          141 | 
          +Learn how to Artificial Integrate and Fire cell with a synapse that is driven by an afferent burst of spikes. | 
        
              
                     | 
          142 | 
          +=== [[Reaction-Diffusion Example – Restricting a reaction to part of a region>>https://neuron.yale.edu/neuron/docs/example-restricting-reaction-part-region||rel=" noopener noreferrer" target="_blank"]] === | 
        
              
                     | 
          143 | 
          + | 
        
              
                     | 
          144 | 
          +**Level**: advanced(%%)  **Type**: user documentation | 
        
              
                     | 
          145 | 
          + | 
        
              
                     | 
          146 | 
          +Implementation example for the restriction of the reaction to part of a region. | 
        
              
                     | 
          147 | 
          +=== [[Segmenting a simulation of a model cell - Introduction>>https://neuron.yale.edu/neuron/docs/segmenting-simulation-model-cell||rel=" noopener noreferrer" target="_blank"]] === | 
        
              
                     | 
          148 | 
          + | 
        
              
                     | 
          149 | 
          +**Level**: advanced(%%)  **Type**: user documentation | 
        
              
                     | 
          150 | 
          + | 
        
              
                     | 
          151 | 
          +=== [[Scripting NEURON basics>>https://neuron.yale.edu/neuron/docs/scripting-neuron-basics||rel=" noopener noreferrer" target="_blank"]] === | 
        
              
                     | 
          152 | 
          + | 
        
              
                     | 
          153 | 
          +**Level**: advanced(%%)  **Type**: user documentation | 
        
              
                     | 
          154 | 
          + | 
        
              
                     | 
          155 | 
          +The objectives of this part of the tutorial are to get familiar with basic operations of NEURON using Python. In this worksheet we will: Create a passive cell membrane in NEURON. Create a synaptic stimulus onto the neuron. Modify parameters of the membrane and stimulus. Visualize results with bokeh. | 
        
              
                     | 
          156 | 
          +=== [[Reaction-Diffusion – Thresholds>>https://neuron.yale.edu/neuron/docs/reaction-diffusion-thresholds||rel=" noopener noreferrer" target="_blank"]] === | 
        
              
                     | 
          157 | 
          + | 
        
              
                     | 
          158 | 
          +**Level**: advanced(%%)  **Type**: interactive tutorial | 
        
              
                     | 
          159 | 
          + | 
        
              
                     | 
          160 | 
          +Learn how to scale reaction rates by a function of the form f(x) for suitably chosen a and m to approximately threshold them by a concentration. | 
        
              
                     | 
          161 | 
          +=== [[Randomness in NEURON models>>https://neuron.yale.edu/neuron/docs/randomness-neuron-models||rel=" noopener noreferrer" target="_blank"]] === | 
        
              
                     | 
          162 | 
          + | 
        
              
                     | 
          163 | 
          +**Level**: advanced(%%)  **Type**: user documentation | 
        
              
                     | 
          164 | 
          + | 
        
              
                     | 
          165 | 
          +We will touch upon the following subjects in this tutorial:  | 
        
              
                     | 
          166 | 
          +How to create model specification code that employs randomization to avoid undesired correlations between parameters, and to produce a model cell or network that has the same architecture and biophysical properties, and generates the same simulation results regardless of whether it is run on serial or parallel hardware. | 
        
              
                     | 
          167 | 
          +How to generate spike streams or other signals that fluctuate in ways that are statistically independent of each other. | 
        
              
                     | 
          168 | 
          + |