| ... | ... | @@ -134,4 +134,90 @@ | 
              
                    | 134 | 134 |  | 
              
                    | 135 | 135 | **Level**: advanced(%%)  **Type**: user documentation | 
              
                    | 136 | 136 |  | 
              
                    |  | 137 | +=== [[Using the Network Builder – Tutorial 1: Making Networks of Artificial Neurons>>https://neuron.yale.edu/neuron/static/docs/netbuild/artnet/outline.html||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    | 137 | 137 |  | 
              
                    |  | 139 | +**Level**: advanced(%%)  **Type**: interactive tutorial | 
              
                    |  | 140 | + | 
              
                    |  | 141 | +Learn how to Artificial Integrate and Fire cell with a synapse that is driven by an afferent burst of spikes. | 
              
                    |  | 142 | +=== [[Reaction-Diffusion Example – Restricting a reaction to part of a region>>https://neuron.yale.edu/neuron/docs/example-restricting-reaction-part-region||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    |  | 143 | + | 
              
                    |  | 144 | +**Level**: advanced(%%)  **Type**: user documentation | 
              
                    |  | 145 | + | 
              
                    |  | 146 | +Implementation example for the restriction of the reaction to part of a region. | 
              
                    |  | 147 | +=== [[Segmenting a simulation of a model cell - Introduction>>https://neuron.yale.edu/neuron/docs/segmenting-simulation-model-cell||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    |  | 148 | + | 
              
                    |  | 149 | +**Level**: advanced(%%)  **Type**: user documentation | 
              
                    |  | 150 | + | 
              
                    |  | 151 | +=== [[Scripting NEURON basics>>https://neuron.yale.edu/neuron/docs/scripting-neuron-basics||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    |  | 152 | + | 
              
                    |  | 153 | +**Level**: advanced(%%)  **Type**: user documentation | 
              
                    |  | 154 | + | 
              
                    |  | 155 | +The objectives of this part of the tutorial are to get familiar with basic operations of NEURON using Python. In this worksheet we will: Create a passive cell membrane in NEURON. Create a synaptic stimulus onto the neuron. Modify parameters of the membrane and stimulus. Visualize results with bokeh. | 
              
                    |  | 156 | +=== [[Reaction-Diffusion – Thresholds>>https://neuron.yale.edu/neuron/docs/reaction-diffusion-thresholds||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    |  | 157 | + | 
              
                    |  | 158 | +**Level**: advanced(%%)  **Type**: interactive tutorial | 
              
                    |  | 159 | + | 
              
                    |  | 160 | +Learn how to scale reaction rates by a function of the form f(x) for suitably chosen a and m to approximately threshold them by a concentration. | 
              
                    |  | 161 | +=== [[Randomness in NEURON models>>https://neuron.yale.edu/neuron/docs/randomness-neuron-models||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    |  | 162 | + | 
              
                    |  | 163 | +**Level**: advanced(%%)  **Type**: user documentation | 
              
                    |  | 164 | + | 
              
                    |  | 165 | +We will touch upon the following subjects in this tutorial: | 
              
                    |  | 166 | +How to create model specification code that employs randomization to avoid undesired correlations between parameters, and to produce a model cell or network that has the same architecture and biophysical properties, and generates the same simulation results regardless of whether it is run on serial or parallel hardware. | 
              
                    |  | 167 | +How to generate spike streams or other signals that fluctuate in ways that are statistically independent of each other. | 
              
                    |  | 168 | +=== [[Using the CellBuilder– Specifying parameterized variation of biophysical properties>>https://neuron.yale.edu/neuron/static/docs/cbtut/parameterized/outline.html||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    |  | 169 | + | 
              
                    |  | 170 | +**Level**: advanced(%%)  **Type**: interactive tutorial | 
              
                    |  | 171 | + | 
              
                    |  | 172 | +How to make one or more biophysical properties vary systematically with position in space. | 
              
                    |  | 173 | +=== [[Using Import3D – An introduction>>https://neuron.yale.edu/neuron/docs/import3d||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    |  | 174 | + | 
              
                    |  | 175 | +**Level**: advanced(%%)  **Type**: user documentation | 
              
                    |  | 176 | + | 
              
                    |  | 177 | +Import3D tool can be used to translate common varieties of cellular morphometric data into a CellBuilder that specifies the anatomical properties of a model neuron. This Tutorial will guide you in reading a morphometric data file and converting it to a NEURON model as well as | 
              
                    |  | 178 | +exploring morphometric data and fixing problems. | 
              
                    |  | 179 | +=== [[Segmenting a simulation of a model network – 1. Implement and test the computational model itself>>https://neuron.yale.edu/neuron/docs/1-implement-and-test-computational-model-itself-0||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    |  | 180 | + | 
              
                    |  | 181 | +**Level**: advanced(%%)  **Type**: user documentation | 
              
                    |  | 182 | + | 
              
                    |  | 183 | +=== [[Segmenting a simulation of a model network – 2. Run a "complete" simulation and save its results>>https://neuron.yale.edu/neuron/docs/2-run-complete-simulation-and-save-its-results-0||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    |  | 184 | + | 
              
                    |  | 185 | +**Level**: advanced(%%)  **Type**: user documentation | 
              
                    |  | 186 | + | 
              
                    |  | 187 | +=== [[Segmenting a simulation of a model cell – 2. Run a "complete" simulation and save its results>>https://neuron.yale.edu/neuron/docs/2-run-complete-simulation-and-save-its-results||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    |  | 188 | + | 
              
                    |  | 189 | +**Level**: advanced(%%)  **Type**: user documentation | 
              
                    |  | 190 | + | 
              
                    |  | 191 | +=== [[Segmenting a simulation of a model cell – 1. Implement and test the computational model itself>>https://neuron.yale.edu/neuron/docs/1-implement-and-test-computational-model-itself||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    |  | 192 | + | 
              
                    |  | 193 | +**Level**: advanced(%%)  **Type**: user documentation | 
              
                    |  | 194 | + | 
              
                    |  | 195 | +=== [[Using NEURON's Optimization Tools – Tutorial 2 : Fitting a model to data>>https://neuron.yale.edu/neuron/static/docs/optimiz/model/outline.html||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    |  | 196 | + | 
              
                    |  | 197 | +**Level**: advanced(%%)  **Type**: user documentation | 
              
                    |  | 198 | + | 
              
                    |  | 199 | +We will go over how to create an "unoptimized" model, set up a current clamp experiment on this model, configure a MultipleRunFitter to do a "run fitness" optimization, load the Experimental Data into the iclamp Run Fitness Generator, specify the parameters that will be adjusted and finally perform the optimization. | 
              
                    |  | 200 | +=== [[Reaction-Diffusion – Hodgkin-Huxley using rxd>>https://neuron.yale.edu/neuron/docs/hodgkin-huxley-using-rxd||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    |  | 201 | + | 
              
                    |  | 202 | +**Level**: advanced(%%)  **Type**: interactive tutorial | 
              
                    |  | 203 | + | 
              
                    |  | 204 | +In this tutorial you will learn how to set the proper parameters for the Hodgkin–Huxley model in NEURON. | 
              
                    |  | 205 | +=== [[Using the CellBuilder – Creating a stylised ("stick-figure") model cell>>https://neuron.yale.edu/neuron/static/docs/cbtut/stylized/outline.html||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    |  | 206 | + | 
              
                    |  | 207 | +**Level**: advanced(%%)  **Type**: - | 
              
                    |  | 208 | + | 
              
                    |  | 209 | +Learn how to build an extremely simplified model of a pyramidal cell. | 
              
                    |  | 210 | +=== [[Ball and Stick model part 2>>https://neuron.yale.edu/neuron/docs/ball-and-stick-model-part-2||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    |  | 211 | + | 
              
                    |  | 212 | +**Level**: advanced(%%)  **Type**: user documentation | 
              
                    |  | 213 | + | 
              
                    |  | 214 | +=== [[Reaction-Diffusion Example – Circadian rhythm>>https://neuron.yale.edu/neuron/docs/example-circadian-rhythm||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    |  | 215 | + | 
              
                    |  | 216 | +**Level**: advanced(%%)  **Type**: user documentation | 
              
                    |  | 217 | + | 
              
                    |  | 218 | +Here we develop a NEURON implementation of the Leloup-Goldbeter model for circadian rhythms in Drosophila.  In this example NEURON's h library and its standard run system are being used as well as matplotlib to plot concentrations of circadian proteins over time. | 
              
                    |  | 219 | +=== [[Segmenting a simulation of a model cell – 3. Run a segmented simulation and save its results>>https://neuron.yale.edu/neuron/docs/3-run-segmented-simulation-and-save-its-results||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    |  | 220 | + | 
              
                    |  | 221 | +**Level**: advanced(%%)  **Type**: user documentation | 
              
                    |  | 222 | + | 
              
                    |  | 223 | + |