| ... |
... |
@@ -170,59 +170,4 @@ |
| 170 |
170 |
**Level**: advanced(%%) **Type**: interactive tutorial |
| 171 |
171 |
|
| 172 |
172 |
How to make one or more biophysical properties vary systematically with position in space. |
| 173 |
|
-=== [[Using Import3D – An introduction>>https://neuron.yale.edu/neuron/docs/import3d||rel=" noopener noreferrer" target="_blank"]] === |
| 174 |
174 |
|
| 175 |
|
-**Level**: advanced(%%) **Type**: user documentation |
| 176 |
|
- |
| 177 |
|
-Import3D tool can be used to translate common varieties of cellular morphometric data into a CellBuilder that specifies the anatomical properties of a model neuron. This Tutorial will guide you in reading a morphometric data file and converting it to a NEURON model as well as |
| 178 |
|
-exploring morphometric data and fixing problems. |
| 179 |
|
-=== [[Segmenting a simulation of a model network – 1. Implement and test the computational model itself>>https://neuron.yale.edu/neuron/docs/1-implement-and-test-computational-model-itself-0||rel=" noopener noreferrer" target="_blank"]] === |
| 180 |
|
- |
| 181 |
|
-**Level**: advanced(%%) **Type**: user documentation |
| 182 |
|
- |
| 183 |
|
-=== [[Segmenting a simulation of a model network – 2. Run a "complete" simulation and save its results>>https://neuron.yale.edu/neuron/docs/2-run-complete-simulation-and-save-its-results-0||rel=" noopener noreferrer" target="_blank"]] === |
| 184 |
|
- |
| 185 |
|
-**Level**: advanced(%%) **Type**: user documentation |
| 186 |
|
- |
| 187 |
|
-=== [[Segmenting a simulation of a model cell – 2. Run a "complete" simulation and save its results>>https://neuron.yale.edu/neuron/docs/2-run-complete-simulation-and-save-its-results||rel=" noopener noreferrer" target="_blank"]] === |
| 188 |
|
- |
| 189 |
|
-**Level**: advanced(%%) **Type**: user documentation |
| 190 |
|
- |
| 191 |
|
-=== [[Segmenting a simulation of a model cell – 1. Implement and test the computational model itself>>https://neuron.yale.edu/neuron/docs/1-implement-and-test-computational-model-itself||rel=" noopener noreferrer" target="_blank"]] === |
| 192 |
|
- |
| 193 |
|
-**Level**: advanced(%%) **Type**: user documentation |
| 194 |
|
- |
| 195 |
|
-=== [[Using NEURON's Optimization Tools – Tutorial 2 : Fitting a model to data>>https://neuron.yale.edu/neuron/static/docs/optimiz/model/outline.html||rel=" noopener noreferrer" target="_blank"]] === |
| 196 |
|
- |
| 197 |
|
-**Level**: advanced(%%) **Type**: user documentation |
| 198 |
|
- |
| 199 |
|
-We will go over how to create an "unoptimized" model, set up a current clamp experiment on this model, configure a MultipleRunFitter to do a "run fitness" optimization, load the Experimental Data into the iclamp Run Fitness Generator, specify the parameters that will be adjusted and finally perform the optimization. |
| 200 |
|
-=== [[Reaction-Diffusion – Hodgkin-Huxley using rxd>>https://neuron.yale.edu/neuron/docs/hodgkin-huxley-using-rxd||rel=" noopener noreferrer" target="_blank"]] === |
| 201 |
|
- |
| 202 |
|
-**Level**: advanced(%%) **Type**: interactive tutorial |
| 203 |
|
- |
| 204 |
|
-In this tutorial you will learn how to set the proper parameters for the Hodgkin–Huxley model in NEURON. |
| 205 |
|
-=== [[Using the CellBuilder – Creating a stylised ("stick-figure") model cell>>https://neuron.yale.edu/neuron/static/docs/cbtut/stylized/outline.html||rel=" noopener noreferrer" target="_blank"]] === |
| 206 |
|
- |
| 207 |
|
-**Level**: advanced(%%) **Type**: - |
| 208 |
|
- |
| 209 |
|
-Learn how to build an extremely simplified model of a pyramidal cell. |
| 210 |
|
-=== [[Ball and Stick model part 2>>https://neuron.yale.edu/neuron/docs/ball-and-stick-model-part-2||rel=" noopener noreferrer" target="_blank"]] === |
| 211 |
|
- |
| 212 |
|
-**Level**: advanced(%%) **Type**: user documentation |
| 213 |
|
- |
| 214 |
|
-=== [[Reaction-Diffusion Example – Circadian rhythm>>https://neuron.yale.edu/neuron/docs/example-circadian-rhythm||rel=" noopener noreferrer" target="_blank"]] === |
| 215 |
|
- |
| 216 |
|
-**Level**: advanced(%%) **Type**: user documentation |
| 217 |
|
- |
| 218 |
|
-Here we develop a NEURON implementation of the Leloup-Goldbeter model for circadian rhythms in Drosophila. In this example NEURON's h library and its standard run system are being used as well as matplotlib to plot concentrations of circadian proteins over time. |
| 219 |
|
-=== [[Segmenting a simulation of a model cell – 3. Run a segmented simulation and save its results>>https://neuron.yale.edu/neuron/docs/3-run-segmented-simulation-and-save-its-results||rel=" noopener noreferrer" target="_blank"]] === |
| 220 |
|
- |
| 221 |
|
-**Level**: advanced(%%) **Type**: user documentation |
| 222 |
|
- |
| 223 |
|
-=== [[ModelView: Compact display of parameters for NEURON models.>>https://neuron.yale.edu/neuron/static/papers/mview/modelviewhbp2004.html||rel=" noopener noreferrer" target="_blank"]] === |
| 224 |
|
- |
| 225 |
|
-**Level**: advanced(%%) **Type**: user documentation |
| 226 |
|
- |
| 227 |
|
-This example demonstrates how ModelView can explore a NEURON model. |
| 228 |
|
- |