Attention: Data Proxy will be migrated from SWIFT to S3 storage at Friday, the 9th of May 2025 starting from 9pm CEST (my timezone). For more details, please join the rocket chat channel https://chat.ebrains.eu/channel/data-proxy-user-group


Changes for page Neuron

Last modified by abonard on 2025/04/10 15:17

From version 30.1
edited by abonard
on 2025/04/10 15:07
Change comment: There is no comment for this version
To version 102.1
edited by abonard
on 2025/04/10 15:16
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -148,4 +148,53 @@
148 148  
149 149  **Level**: advanced(%%) **Type**: user documentation
150 150  
151 +=== [[Scripting NEURON basics>>https://neuron.yale.edu/neuron/docs/scripting-neuron-basics||rel=" noopener noreferrer" target="_blank"]] ===
151 151  
153 +**Level**: advanced(%%) **Type**: user documentation
154 +
155 +The objectives of this part of the tutorial are to get familiar with basic operations of NEURON using Python. In this worksheet we will: Create a passive cell membrane in NEURON. Create a synaptic stimulus onto the neuron. Modify parameters of the membrane and stimulus. Visualize results with bokeh.
156 +=== [[Reaction-Diffusion – Thresholds>>https://neuron.yale.edu/neuron/docs/reaction-diffusion-thresholds||rel=" noopener noreferrer" target="_blank"]] ===
157 +
158 +**Level**: advanced(%%) **Type**: interactive tutorial
159 +
160 +Learn how to scale reaction rates by a function of the form f(x) for suitably chosen a and m to approximately threshold them by a concentration.
161 +=== [[Randomness in NEURON models>>https://neuron.yale.edu/neuron/docs/randomness-neuron-models||rel=" noopener noreferrer" target="_blank"]] ===
162 +
163 +**Level**: advanced(%%) **Type**: user documentation
164 +
165 +We will touch upon the following subjects in this tutorial:
166 +How to create model specification code that employs randomization to avoid undesired correlations between parameters, and to produce a model cell or network that has the same architecture and biophysical properties, and generates the same simulation results regardless of whether it is run on serial or parallel hardware.
167 +How to generate spike streams or other signals that fluctuate in ways that are statistically independent of each other.
168 +=== [[Using the CellBuilder– Specifying parameterized variation of biophysical properties>>https://neuron.yale.edu/neuron/static/docs/cbtut/parameterized/outline.html||rel=" noopener noreferrer" target="_blank"]] ===
169 +
170 +**Level**: advanced(%%) **Type**: interactive tutorial
171 +
172 +How to make one or more biophysical properties vary systematically with position in space.
173 +=== [[Using Import3D – An introduction>>https://neuron.yale.edu/neuron/docs/import3d||rel=" noopener noreferrer" target="_blank"]] ===
174 +
175 +**Level**: advanced(%%) **Type**: user documentation
176 +
177 +Import3D tool can be used to translate common varieties of cellular morphometric data into a CellBuilder that specifies the anatomical properties of a model neuron. This Tutorial will guide you in reading a morphometric data file and converting it to a NEURON model as well as
178 +exploring morphometric data and fixing problems.
179 +=== [[Segmenting a simulation of a model network – 1. Implement and test the computational model itself>>https://neuron.yale.edu/neuron/docs/1-implement-and-test-computational-model-itself-0||rel=" noopener noreferrer" target="_blank"]] ===
180 +
181 +**Level**: advanced(%%) **Type**: user documentation
182 +
183 +=== [[Segmenting a simulation of a model network – 2. Run a "complete" simulation and save its results>>https://neuron.yale.edu/neuron/docs/2-run-complete-simulation-and-save-its-results-0||rel=" noopener noreferrer" target="_blank"]] ===
184 +
185 +**Level**: advanced(%%) **Type**: user documentation
186 +
187 +=== [[Segmenting a simulation of a model cell – 2. Run a "complete" simulation and save its results>>https://neuron.yale.edu/neuron/docs/2-run-complete-simulation-and-save-its-results||rel=" noopener noreferrer" target="_blank"]] ===
188 +
189 +**Level**: advanced(%%) **Type**: user documentation
190 +
191 +=== [[Segmenting a simulation of a model cell – 1. Implement and test the computational model itself>>https://neuron.yale.edu/neuron/docs/1-implement-and-test-computational-model-itself||rel=" noopener noreferrer" target="_blank"]] ===
192 +
193 +**Level**: advanced(%%) **Type**: user documentation
194 +
195 +=== [[Using NEURON's Optimization Tools – Tutorial 2 : Fitting a model to data>>https://neuron.yale.edu/neuron/static/docs/optimiz/model/outline.html||rel=" noopener noreferrer" target="_blank"]] ===
196 +
197 +**Level**: advanced(%%) **Type**: user documentation
198 +
199 +We will go over how to create an "unoptimized" model, set up a current clamp experiment on this model, configure a MultipleRunFitter to do a "run fitness" optimization, load the Experimental Data into the iclamp Run Fitness Generator, specify the parameters that will be adjusted and finally perform the optimization.
200 +