| ... | ... | @@ -2,6 +2,8 @@ | 
              
                    | 2 | 2 |  | 
              
                    | 3 | 3 | * ((( ====  **[[Beginner >>||anchor = "HBeginner-1"]]** ==== ))) | 
              
                    | 4 | 4 |  | 
              
                    |  | 5 | +* ((( ==== **[[Advanced >>||anchor = "HAdvanced-1"]]** ==== ))) | 
              
                    |  | 6 | + | 
              
                    | 5 | 5 | === **Beginner** === | 
              
                    | 6 | 6 |  | 
              
                    | 7 | 7 | === [[A NEURON Programming Tutorial - part C>>http://web.mit.edu/neuron_v7.4/nrntuthtml/tutorial/tutC.html||rel=" noopener noreferrer" target="_blank"]] === | 
                      
        | ... | ... | @@ -50,4 +50,185 @@ | 
              
                    | 50 | 50 | **Level**: beginner(%%)  **Type**: user documentation | 
              
                    | 51 | 51 |  | 
              
                    | 52 | 52 | After this tutorial, students will be able to save data from the simulations and methods for increasing simulation speed. | 
              
                    |  | 55 | +=== **Advanced** === | 
              
                    | 53 | 53 |  | 
              
                    |  | 57 | +=== [[Reaction-Diffusion – Radial Diffusion>>https://neuron.yale.edu/neuron/docs/radial-diffusion||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    |  | 58 | + | 
              
                    |  | 59 | +**Level**: advanced(%%)  **Type**: - | 
              
                    |  | 60 | + | 
              
                    |  | 61 | +Using NEURON Radial diffusion can be implemented in rxd using multicompartment reactions. By creating a series of shells and borders with reactions between them dependent the diffusion coefficient. | 
              
                    |  | 62 | +=== [[Reaction-Diffusion Example – Calcium Wave>>https://neuron.yale.edu/neuron/docs/reaction-diffusion-calcium-wave||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    |  | 63 | + | 
              
                    |  | 64 | +**Level**: advanced(%%)  **Type**: interactive tutorial | 
              
                    |  | 65 | + | 
              
                    |  | 66 | +The model presented in this tutorial generates Ca2+ waves and is a simplification of the model we used in Neymotin et al., 2015. | 
              
                    |  | 67 | +=== [[Reaction-Diffusion – 3D/Hybrid Intracellular Tutorial>>https://neuron.yale.edu/neuron/docs/3dhybrid-intracellular-tutorial||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    |  | 68 | + | 
              
                    |  | 69 | +**Level**: advanced(%%)  **Type**: interactive tutorial | 
              
                    |  | 70 | + | 
              
                    |  | 71 | +This tutorial provides an overview of how to set up a simple travelling wave in both cases. | 
              
                    |  | 72 | +=== [[Reaction-Diffusion – Initialization strategies>>https://neuron.yale.edu/neuron/docs/initialization-strategies||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    |  | 73 | + | 
              
                    |  | 74 | +**Level**: advanced(%%)  **Type**: interactive tutorial | 
              
                    |  | 75 | + | 
              
                    |  | 76 | +In this tutorial you will learn how to implement cell signalling function in the reaction-diffusion system by characterising your problems by the answers to three questions: (1) Where do the dynamics occur, (2) Who are the actors, and (3) How do they interact? | 
              
                    |  | 77 | +=== [[Ball and Stick model part 3>>https://neuron.yale.edu/neuron/docs/ball-and-stick-model-part-3||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    |  | 78 | + | 
              
                    |  | 79 | +**Level**: advanced(%%)  **Type**: user documentation | 
              
                    |  | 80 | + | 
              
                    |  | 81 | +=== [[Using the CellBuilder – Introduction>>https://neuron.yale.edu/neuron/static/docs/cbtut/main.html||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    |  | 82 | + | 
              
                    |  | 83 | +**Level**: advanced(%%)  **Type**: interactive tutorial | 
              
                    |  | 84 | + | 
              
                    |  | 85 | +The following tutorials show how to use the CellBuilder, a powerful and convenient tool for constructing and managing models of individual neurons. It breaks the job of model specification into a sequence of tasks: | 
              
                    |  | 86 | +1. Setting up model topology (branching pattern). | 
              
                    |  | 87 | +2. Grouping sections with shared properties into subsets. | 
              
                    |  | 88 | +3. Assigning geometric properties (length, diameter) to subsets or individual sections, and specifying a discretization strategy (i.e. how to set nseg). | 
              
                    |  | 89 | +4. Assigning biophysical properties (Ra, cm, ion channels, buffers, pumps, etc.) to subsets or individual sections. | 
              
                    |  | 90 | +=== [[Using Import3D – Exploring morphometric data and fixing problems>>https://neuron.yale.edu/neuron/docs/import3d/fix_problems||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    |  | 91 | + | 
              
                    |  | 92 | +**Level**: advanced(%%)  **Type**: user documentation | 
              
                    |  | 93 | + | 
              
                    |  | 94 | +Import3D tool can be used to translate common varieties of cellular morphometric data into a CellBuilder that specifies the anatomical properties of a model neuron. This Tutorial will guide you through how to fix problems in your morphometric data. | 
              
                    |  | 95 | +=== [[Randomness in NEURON models– The solution>>https://neuron.yale.edu/neuron/docs/solution||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    |  | 96 | + | 
              
                    |  | 97 | +**Level**: advanced(%%)  **Type**: user documentation | 
              
                    |  | 98 | + | 
              
                    |  | 99 | +In this part of the tutorial we will show you how to give NetStim its own random number generator. | 
              
                    |  | 100 | +=== [[Segmentation intro: Dealing with simulations that generate a lot of data>>https://neuron.yale.edu/neuron/docs/dealing-simulations-generate-lot-data||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    |  | 101 | + | 
              
                    |  | 102 | +**Level**: advanced(%%)  **Type**: user documentation | 
              
                    |  | 103 | + | 
              
                    |  | 104 | +How to deal with simulations that generate a lot of data that must be saved? We will showcase different approaches. | 
              
                    |  | 105 | +=== [[Using the Channel Builder – Creating a channel from an HH-style specification>>https://neuron.yale.edu/neuron/static/docs/chanlbild/hhstyle/outline.html||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    |  | 106 | + | 
              
                    |  | 107 | +**Level**: advanced(%%)  **Type**: interactive tutorial | 
              
                    |  | 108 | + | 
              
                    |  | 109 | +Our goal is to implement a new voltage-gated macroscopic current whose properties are described by HH-style equations. | 
              
                    |  | 110 | +=== [[Using the Channel Builder – Creating a channel from a kinetic scheme specification>>https://neuron.yale.edu/neuron/static/docs/chanlbild/kinetic/outline.html||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    |  | 111 | + | 
              
                    |  | 112 | +**Level**: advanced(%%)  **Type**: interactive tutorial | 
              
                    |  | 113 | + | 
              
                    |  | 114 | +Here we will implement a new voltage-gated macroscopic current whose properties are described by a family of chemical reactions. | 
              
                    |  | 115 | +=== [[Randomness in NEURON models– Source code that demonstrates the solution>>https://neuron.yale.edu/neuron/docs/source-code-demonstrates-solution||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    |  | 116 | + | 
              
                    |  | 117 | +**Level**: advanced(%%)  **Type**: user documentation | 
              
                    |  | 118 | + | 
              
                    |  | 119 | +=== [[Using the Network Builder – Introduction to Network Construction>>https://neuron.yale.edu/neuron/static/docs/netbuild/intro.html||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    |  | 120 | + | 
              
                    |  | 121 | +**Level**: advanced(%%)  **Type**: user documentation | 
              
                    |  | 122 | + | 
              
                    |  | 123 | +=== [[Python introduction>>https://neuron.yale.edu/neuron/docs/python-introduction||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    |  | 124 | + | 
              
                    |  | 125 | +**Level**: advanced(%%)  **Type**: user documentation | 
              
                    |  | 126 | + | 
              
                    |  | 127 | +This page provides a brief introduction to Python syntax, Variables, Lists and Dicts, For loops and iterators, Functions, Classes, Importing modules, Writing and reading files with Pickling. | 
              
                    |  | 128 | +=== [[Reaction-Diffusion Example – RxD with MOD files>>https://neuron.yale.edu/neuron/docs/rxd-mod-files||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    |  | 129 | + | 
              
                    |  | 130 | +**Level**: advanced(%%)  **Type**: user documentation | 
              
                    |  | 131 | + | 
              
                    |  | 132 | +NEURON's reaction-diffusion infrastructure can be used to readily allow intracellular concentrations to respond to currents generated in MOD files. This example shows you a simple model with just a single point soma, of length and diameter 10 microns, with Hodgkin-Huxley kinetics, and dynamic sodium (declared using rxd but without any additional kinetics). | 
              
                    |  | 133 | +=== [[Segmenting a simulation of a model network - Introduction>>https://neuron.yale.edu/neuron/docs/segmenting-simulation-model-network||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    |  | 134 | + | 
              
                    |  | 135 | +**Level**: advanced(%%)  **Type**: user documentation | 
              
                    |  | 136 | + | 
              
                    |  | 137 | +=== [[Using the Network Builder – Tutorial 1: Making Networks of Artificial Neurons>>https://neuron.yale.edu/neuron/static/docs/netbuild/artnet/outline.html||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    |  | 138 | + | 
              
                    |  | 139 | +**Level**: advanced(%%)  **Type**: interactive tutorial | 
              
                    |  | 140 | + | 
              
                    |  | 141 | +Learn how to Artificial Integrate and Fire cell with a synapse that is driven by an afferent burst of spikes. | 
              
                    |  | 142 | +=== [[Reaction-Diffusion Example – Restricting a reaction to part of a region>>https://neuron.yale.edu/neuron/docs/example-restricting-reaction-part-region||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    |  | 143 | + | 
              
                    |  | 144 | +**Level**: advanced(%%)  **Type**: user documentation | 
              
                    |  | 145 | + | 
              
                    |  | 146 | +Implementation example for the restriction of the reaction to part of a region. | 
              
                    |  | 147 | +=== [[Segmenting a simulation of a model cell - Introduction>>https://neuron.yale.edu/neuron/docs/segmenting-simulation-model-cell||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    |  | 148 | + | 
              
                    |  | 149 | +**Level**: advanced(%%)  **Type**: user documentation | 
              
                    |  | 150 | + | 
              
                    |  | 151 | +=== [[Scripting NEURON basics>>https://neuron.yale.edu/neuron/docs/scripting-neuron-basics||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    |  | 152 | + | 
              
                    |  | 153 | +**Level**: advanced(%%)  **Type**: user documentation | 
              
                    |  | 154 | + | 
              
                    |  | 155 | +The objectives of this part of the tutorial are to get familiar with basic operations of NEURON using Python. In this worksheet we will: Create a passive cell membrane in NEURON. Create a synaptic stimulus onto the neuron. Modify parameters of the membrane and stimulus. Visualize results with bokeh. | 
              
                    |  | 156 | +=== [[Reaction-Diffusion – Thresholds>>https://neuron.yale.edu/neuron/docs/reaction-diffusion-thresholds||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    |  | 157 | + | 
              
                    |  | 158 | +**Level**: advanced(%%)  **Type**: interactive tutorial | 
              
                    |  | 159 | + | 
              
                    |  | 160 | +Learn how to scale reaction rates by a function of the form f(x) for suitably chosen a and m to approximately threshold them by a concentration. | 
              
                    |  | 161 | +=== [[Randomness in NEURON models>>https://neuron.yale.edu/neuron/docs/randomness-neuron-models||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    |  | 162 | + | 
              
                    |  | 163 | +**Level**: advanced(%%)  **Type**: user documentation | 
              
                    |  | 164 | + | 
              
                    |  | 165 | +We will touch upon the following subjects in this tutorial: | 
              
                    |  | 166 | +How to create model specification code that employs randomization to avoid undesired correlations between parameters, and to produce a model cell or network that has the same architecture and biophysical properties, and generates the same simulation results regardless of whether it is run on serial or parallel hardware. | 
              
                    |  | 167 | +How to generate spike streams or other signals that fluctuate in ways that are statistically independent of each other. | 
              
                    |  | 168 | +=== [[Using the CellBuilder– Specifying parameterized variation of biophysical properties>>https://neuron.yale.edu/neuron/static/docs/cbtut/parameterized/outline.html||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    |  | 169 | + | 
              
                    |  | 170 | +**Level**: advanced(%%)  **Type**: interactive tutorial | 
              
                    |  | 171 | + | 
              
                    |  | 172 | +How to make one or more biophysical properties vary systematically with position in space. | 
              
                    |  | 173 | +=== [[Using Import3D – An introduction>>https://neuron.yale.edu/neuron/docs/import3d||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    |  | 174 | + | 
              
                    |  | 175 | +**Level**: advanced(%%)  **Type**: user documentation | 
              
                    |  | 176 | + | 
              
                    |  | 177 | +Import3D tool can be used to translate common varieties of cellular morphometric data into a CellBuilder that specifies the anatomical properties of a model neuron. This Tutorial will guide you in reading a morphometric data file and converting it to a NEURON model as well as | 
              
                    |  | 178 | +exploring morphometric data and fixing problems. | 
              
                    |  | 179 | +=== [[Segmenting a simulation of a model network – 1. Implement and test the computational model itself>>https://neuron.yale.edu/neuron/docs/1-implement-and-test-computational-model-itself-0||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    |  | 180 | + | 
              
                    |  | 181 | +**Level**: advanced(%%)  **Type**: user documentation | 
              
                    |  | 182 | + | 
              
                    |  | 183 | +=== [[Segmenting a simulation of a model network – 2. Run a "complete" simulation and save its results>>https://neuron.yale.edu/neuron/docs/2-run-complete-simulation-and-save-its-results-0||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    |  | 184 | + | 
              
                    |  | 185 | +**Level**: advanced(%%)  **Type**: user documentation | 
              
                    |  | 186 | + | 
              
                    |  | 187 | +=== [[Segmenting a simulation of a model cell – 2. Run a "complete" simulation and save its results>>https://neuron.yale.edu/neuron/docs/2-run-complete-simulation-and-save-its-results||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    |  | 188 | + | 
              
                    |  | 189 | +**Level**: advanced(%%)  **Type**: user documentation | 
              
                    |  | 190 | + | 
              
                    |  | 191 | +=== [[Segmenting a simulation of a model cell – 1. Implement and test the computational model itself>>https://neuron.yale.edu/neuron/docs/1-implement-and-test-computational-model-itself||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    |  | 192 | + | 
              
                    |  | 193 | +**Level**: advanced(%%)  **Type**: user documentation | 
              
                    |  | 194 | + | 
              
                    |  | 195 | +=== [[Using NEURON's Optimization Tools – Tutorial 2 : Fitting a model to data>>https://neuron.yale.edu/neuron/static/docs/optimiz/model/outline.html||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    |  | 196 | + | 
              
                    |  | 197 | +**Level**: advanced(%%)  **Type**: user documentation | 
              
                    |  | 198 | + | 
              
                    |  | 199 | +We will go over how to create an "unoptimized" model, set up a current clamp experiment on this model, configure a MultipleRunFitter to do a "run fitness" optimization, load the Experimental Data into the iclamp Run Fitness Generator, specify the parameters that will be adjusted and finally perform the optimization. | 
              
                    |  | 200 | +=== [[Reaction-Diffusion – Hodgkin-Huxley using rxd>>https://neuron.yale.edu/neuron/docs/hodgkin-huxley-using-rxd||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    |  | 201 | + | 
              
                    |  | 202 | +**Level**: advanced(%%)  **Type**: interactive tutorial | 
              
                    |  | 203 | + | 
              
                    |  | 204 | +In this tutorial you will learn how to set the proper parameters for the Hodgkin–Huxley model in NEURON. | 
              
                    |  | 205 | +=== [[Using the CellBuilder – Creating a stylised ("stick-figure") model cell>>https://neuron.yale.edu/neuron/static/docs/cbtut/stylized/outline.html||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    |  | 206 | + | 
              
                    |  | 207 | +**Level**: advanced(%%)  **Type**: - | 
              
                    |  | 208 | + | 
              
                    |  | 209 | +Learn how to build an extremely simplified model of a pyramidal cell. | 
              
                    |  | 210 | +=== [[Ball and Stick model part 2>>https://neuron.yale.edu/neuron/docs/ball-and-stick-model-part-2||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    |  | 211 | + | 
              
                    |  | 212 | +**Level**: advanced(%%)  **Type**: user documentation | 
              
                    |  | 213 | + | 
              
                    |  | 214 | +=== [[Reaction-Diffusion Example – Circadian rhythm>>https://neuron.yale.edu/neuron/docs/example-circadian-rhythm||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    |  | 215 | + | 
              
                    |  | 216 | +**Level**: advanced(%%)  **Type**: user documentation | 
              
                    |  | 217 | + | 
              
                    |  | 218 | +Here we develop a NEURON implementation of the Leloup-Goldbeter model for circadian rhythms in Drosophila.  In this example NEURON's h library and its standard run system are being used as well as matplotlib to plot concentrations of circadian proteins over time. | 
              
                    |  | 219 | +=== [[Segmenting a simulation of a model cell – 3. Run a segmented simulation and save its results>>https://neuron.yale.edu/neuron/docs/3-run-segmented-simulation-and-save-its-results||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    |  | 220 | + | 
              
                    |  | 221 | +**Level**: advanced(%%)  **Type**: user documentation | 
              
                    |  | 222 | + | 
              
                    |  | 223 | +=== [[ModelView: Compact display of parameters for NEURON models.>>https://neuron.yale.edu/neuron/static/papers/mview/modelviewhbp2004.html||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    |  | 224 | + | 
              
                    |  | 225 | +**Level**: advanced(%%)  **Type**: user documentation | 
              
                    |  | 226 | + | 
              
                    |  | 227 | +This example demonstrates how ModelView can explore a NEURON model. | 
              
                    |  | 228 | +=== [[Segmenting a simulation of a model network – 3. Run a segmented simulation and save its results>>https://neuron.yale.edu/neuron/docs/3-run-segmented-simulation-and-save-its-results-0||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    |  | 229 | + | 
              
                    |  | 230 | +**Level**: advanced(%%)  **Type**: user documentation | 
              
                    |  | 231 | + | 
              
                    |  | 232 | +=== [[Segmenting a simulation of a model network – 4. Reconstitute and verify the "complete" simulation results>>https://neuron.yale.edu/neuron/docs/4-reconstitute-and-verify-complete-simulation-results-0||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    |  | 233 | + | 
              
                    |  | 234 | +**Level**: advanced(%%)  **Type**: user documentation | 
              
                    |  | 235 | + | 
              
                    |  | 236 | + |