| ... | 
        ... | 
                @@ -2,6 +2,8 @@ | 
      
              
                    | 2 | 
          2 | 
            | 
        
              
                    | 3 | 
          3 | 
           * ((( ====  **[[Beginner >>||anchor = "HBeginner-1"]]** ==== ))) | 
        
              
                    | 4 | 
          4 | 
            | 
        
              
                     | 
          5 | 
          +* ((( ==== **[[Advanced >>||anchor = "HAdvanced-1"]]** ==== ))) | 
        
              
                     | 
          6 | 
          + | 
        
              
                    | 5 | 
          5 | 
           === **Beginner** === | 
        
              
                    | 6 | 
          6 | 
            | 
        
              
                    | 7 | 
          7 | 
           === [[A NEURON Programming Tutorial - part C>>http://web.mit.edu/neuron_v7.4/nrntuthtml/tutorial/tutC.html||rel=" noopener noreferrer" target="_blank"]] === | 
        
                      
        | ... | 
        ... | 
                @@ -50,4 +50,64 @@ | 
      
              
                    | 50 | 
          50 | 
           **Level**: beginner(%%)  **Type**: user documentation | 
        
              
                    | 51 | 
          51 | 
            | 
        
              
                    | 52 | 
          52 | 
           After this tutorial, students will be able to save data from the simulations and methods for increasing simulation speed. | 
        
              
                     | 
          55 | 
          +=== **Advanced** === | 
        
              
                    | 53 | 
          53 | 
            | 
        
              
                     | 
          57 | 
          +=== [[Reaction-Diffusion – Radial Diffusion>>https://neuron.yale.edu/neuron/docs/radial-diffusion||rel=" noopener noreferrer" target="_blank"]] === | 
        
              
                     | 
          58 | 
          + | 
        
              
                     | 
          59 | 
          +**Level**: advanced(%%)  **Type**: - | 
        
              
                     | 
          60 | 
          + | 
        
              
                     | 
          61 | 
          +Using NEURON Radial diffusion can be implemented in rxd using multicompartment reactions. By creating a series of shells and borders with reactions between them dependent the diffusion coefficient. | 
        
              
                     | 
          62 | 
          +=== [[Reaction-Diffusion Example – Calcium Wave>>https://neuron.yale.edu/neuron/docs/reaction-diffusion-calcium-wave||rel=" noopener noreferrer" target="_blank"]] === | 
        
              
                     | 
          63 | 
          + | 
        
              
                     | 
          64 | 
          +**Level**: advanced(%%)  **Type**: interactive tutorial | 
        
              
                     | 
          65 | 
          + | 
        
              
                     | 
          66 | 
          +The model presented in this tutorial generates Ca2+ waves and is a simplification of the model we used in Neymotin et al., 2015. | 
        
              
                     | 
          67 | 
          +=== [[Reaction-Diffusion – 3D/Hybrid Intracellular Tutorial>>https://neuron.yale.edu/neuron/docs/3dhybrid-intracellular-tutorial||rel=" noopener noreferrer" target="_blank"]] === | 
        
              
                     | 
          68 | 
          + | 
        
              
                     | 
          69 | 
          +**Level**: advanced(%%)  **Type**: interactive tutorial | 
        
              
                     | 
          70 | 
          + | 
        
              
                     | 
          71 | 
          +This tutorial provides an overview of how to set up a simple travelling wave in both cases. | 
        
              
                     | 
          72 | 
          +=== [[Reaction-Diffusion – Initialization strategies>>https://neuron.yale.edu/neuron/docs/initialization-strategies||rel=" noopener noreferrer" target="_blank"]] === | 
        
              
                     | 
          73 | 
          + | 
        
              
                     | 
          74 | 
          +**Level**: advanced(%%)  **Type**: interactive tutorial | 
        
              
                     | 
          75 | 
          + | 
        
              
                     | 
          76 | 
          +In this tutorial you will learn how to implement cell signalling function in the reaction-diffusion system by characterising your problems by the answers to three questions: (1) Where do the dynamics occur, (2) Who are the actors, and (3) How do they interact? | 
        
              
                     | 
          77 | 
          +=== [[Ball and Stick model part 3>>https://neuron.yale.edu/neuron/docs/ball-and-stick-model-part-3||rel=" noopener noreferrer" target="_blank"]] === | 
        
              
                     | 
          78 | 
          + | 
        
              
                     | 
          79 | 
          +**Level**: advanced(%%)  **Type**: user documentation | 
        
              
                     | 
          80 | 
          + | 
        
              
                     | 
          81 | 
          +=== [[Using the CellBuilder – Introduction>>https://neuron.yale.edu/neuron/static/docs/cbtut/main.html||rel=" noopener noreferrer" target="_blank"]] === | 
        
              
                     | 
          82 | 
          + | 
        
              
                     | 
          83 | 
          +**Level**: advanced(%%)  **Type**: interactive tutorial | 
        
              
                     | 
          84 | 
          + | 
        
              
                     | 
          85 | 
          +The following tutorials show how to use the CellBuilder, a powerful and convenient tool for constructing and managing models of individual neurons. It breaks the job of model specification into a sequence of tasks: | 
        
              
                     | 
          86 | 
          +1. Setting up model topology (branching pattern). | 
        
              
                     | 
          87 | 
          +2. Grouping sections with shared properties into subsets. | 
        
              
                     | 
          88 | 
          +3. Assigning geometric properties (length, diameter) to subsets or individual sections, and specifying a discretization strategy (i.e. how to set nseg). | 
        
              
                     | 
          89 | 
          +4. Assigning biophysical properties (Ra, cm, ion channels, buffers, pumps, etc.) to subsets or individual sections. | 
        
              
                     | 
          90 | 
          +=== [[Using Import3D – Exploring morphometric data and fixing problems>>https://neuron.yale.edu/neuron/docs/import3d/fix_problems||rel=" noopener noreferrer" target="_blank"]] === | 
        
              
                     | 
          91 | 
          + | 
        
              
                     | 
          92 | 
          +**Level**: advanced(%%)  **Type**: user documentation | 
        
              
                     | 
          93 | 
          + | 
        
              
                     | 
          94 | 
          +Import3D tool can be used to translate common varieties of cellular morphometric data into a CellBuilder that specifies the anatomical properties of a model neuron. This Tutorial will guide you through how to fix problems in your morphometric data. | 
        
              
                     | 
          95 | 
          +=== [[Randomness in NEURON models– The solution>>https://neuron.yale.edu/neuron/docs/solution||rel=" noopener noreferrer" target="_blank"]] === | 
        
              
                     | 
          96 | 
          + | 
        
              
                     | 
          97 | 
          +**Level**: advanced(%%)  **Type**: user documentation | 
        
              
                     | 
          98 | 
          + | 
        
              
                     | 
          99 | 
          +In this part of the tutorial we will show you how to give NetStim its own random number generator. | 
        
              
                     | 
          100 | 
          +=== [[Segmentation intro: Dealing with simulations that generate a lot of data>>https://neuron.yale.edu/neuron/docs/dealing-simulations-generate-lot-data||rel=" noopener noreferrer" target="_blank"]] === | 
        
              
                     | 
          101 | 
          + | 
        
              
                     | 
          102 | 
          +**Level**: advanced(%%)  **Type**: user documentation | 
        
              
                     | 
          103 | 
          + | 
        
              
                     | 
          104 | 
          +How to deal with simulations that generate a lot of data that must be saved? We will showcase different approaches. | 
        
              
                     | 
          105 | 
          +=== [[Using the Channel Builder – Creating a channel from an HH-style specification>>https://neuron.yale.edu/neuron/static/docs/chanlbild/hhstyle/outline.html||rel=" noopener noreferrer" target="_blank"]] === | 
        
              
                     | 
          106 | 
          + | 
        
              
                     | 
          107 | 
          +**Level**: advanced(%%)  **Type**: interactive tutorial | 
        
              
                     | 
          108 | 
          + | 
        
              
                     | 
          109 | 
          +Our goal is to implement a new voltage-gated macroscopic current whose properties are described by HH-style equations. | 
        
              
                     | 
          110 | 
          +=== [[Using the Channel Builder – Creating a channel from a kinetic scheme specification>>https://neuron.yale.edu/neuron/static/docs/chanlbild/kinetic/outline.html||rel=" noopener noreferrer" target="_blank"]] === | 
        
              
                     | 
          111 | 
          + | 
        
              
                     | 
          112 | 
          +**Level**: advanced(%%)  **Type**: interactive tutorial | 
        
              
                     | 
          113 | 
          + | 
        
              
                     | 
          114 | 
          +Here we will implement a new voltage-gated macroscopic current whose properties are described by a family of chemical reactions. | 
        
              
                     | 
          115 | 
          + |