... |
... |
@@ -158,43 +158,4 @@ |
158 |
158 |
**Level**: advanced(%%) **Type**: interactive tutorial |
159 |
159 |
|
160 |
160 |
Learn how to scale reaction rates by a function of the form f(x) for suitably chosen a and m to approximately threshold them by a concentration. |
161 |
|
-=== [[Randomness in NEURON models>>https://neuron.yale.edu/neuron/docs/randomness-neuron-models||rel=" noopener noreferrer" target="_blank"]] === |
162 |
162 |
|
163 |
|
-**Level**: advanced(%%) **Type**: user documentation |
164 |
|
- |
165 |
|
-We will touch upon the following subjects in this tutorial: |
166 |
|
-How to create model specification code that employs randomization to avoid undesired correlations between parameters, and to produce a model cell or network that has the same architecture and biophysical properties, and generates the same simulation results regardless of whether it is run on serial or parallel hardware. |
167 |
|
-How to generate spike streams or other signals that fluctuate in ways that are statistically independent of each other. |
168 |
|
-=== [[Using the CellBuilder– Specifying parameterized variation of biophysical properties>>https://neuron.yale.edu/neuron/static/docs/cbtut/parameterized/outline.html||rel=" noopener noreferrer" target="_blank"]] === |
169 |
|
- |
170 |
|
-**Level**: advanced(%%) **Type**: interactive tutorial |
171 |
|
- |
172 |
|
-How to make one or more biophysical properties vary systematically with position in space. |
173 |
|
-=== [[Using Import3D – An introduction>>https://neuron.yale.edu/neuron/docs/import3d||rel=" noopener noreferrer" target="_blank"]] === |
174 |
|
- |
175 |
|
-**Level**: advanced(%%) **Type**: user documentation |
176 |
|
- |
177 |
|
-Import3D tool can be used to translate common varieties of cellular morphometric data into a CellBuilder that specifies the anatomical properties of a model neuron. This Tutorial will guide you in reading a morphometric data file and converting it to a NEURON model as well as |
178 |
|
-exploring morphometric data and fixing problems. |
179 |
|
-=== [[Segmenting a simulation of a model network – 1. Implement and test the computational model itself>>https://neuron.yale.edu/neuron/docs/1-implement-and-test-computational-model-itself-0||rel=" noopener noreferrer" target="_blank"]] === |
180 |
|
- |
181 |
|
-**Level**: advanced(%%) **Type**: user documentation |
182 |
|
- |
183 |
|
-=== [[Segmenting a simulation of a model network – 2. Run a "complete" simulation and save its results>>https://neuron.yale.edu/neuron/docs/2-run-complete-simulation-and-save-its-results-0||rel=" noopener noreferrer" target="_blank"]] === |
184 |
|
- |
185 |
|
-**Level**: advanced(%%) **Type**: user documentation |
186 |
|
- |
187 |
|
-=== [[Segmenting a simulation of a model cell – 2. Run a "complete" simulation and save its results>>https://neuron.yale.edu/neuron/docs/2-run-complete-simulation-and-save-its-results||rel=" noopener noreferrer" target="_blank"]] === |
188 |
|
- |
189 |
|
-**Level**: advanced(%%) **Type**: user documentation |
190 |
|
- |
191 |
|
-=== [[Segmenting a simulation of a model cell – 1. Implement and test the computational model itself>>https://neuron.yale.edu/neuron/docs/1-implement-and-test-computational-model-itself||rel=" noopener noreferrer" target="_blank"]] === |
192 |
|
- |
193 |
|
-**Level**: advanced(%%) **Type**: user documentation |
194 |
|
- |
195 |
|
-=== [[Using NEURON's Optimization Tools – Tutorial 2 : Fitting a model to data>>https://neuron.yale.edu/neuron/static/docs/optimiz/model/outline.html||rel=" noopener noreferrer" target="_blank"]] === |
196 |
|
- |
197 |
|
-**Level**: advanced(%%) **Type**: user documentation |
198 |
|
- |
199 |
|
-We will go over how to create an "unoptimized" model, set up a current clamp experiment on this model, configure a MultipleRunFitter to do a "run fitness" optimization, load the Experimental Data into the iclamp Run Fitness Generator, specify the parameters that will be adjusted and finally perform the optimization. |
200 |
|
- |