... |
... |
@@ -2,6 +2,8 @@ |
2 |
2 |
|
3 |
3 |
* ((( ==== **[[Beginner >>||anchor = "HBeginner-1"]]** ==== ))) |
4 |
4 |
|
|
5 |
+* ((( ==== **[[Advanced >>||anchor = "HAdvanced-1"]]** ==== ))) |
|
6 |
+ |
5 |
5 |
=== **Beginner** === |
6 |
6 |
|
7 |
7 |
=== [[A NEURON Programming Tutorial - part C>>http://web.mit.edu/neuron_v7.4/nrntuthtml/tutorial/tutC.html||rel=" noopener noreferrer" target="_blank"]] === |
... |
... |
@@ -40,4 +40,195 @@ |
40 |
40 |
**Level**: beginner(%%) **Type**: interactive tutorial |
41 |
41 |
|
42 |
42 |
In this beginner tutorial you will learn how to make a simple model using hoc and how to use NEURON's graphical tools to create an interface for running simulations and to modify the model itself. |
|
45 |
+=== [[The hoc programming language>>https://neuron.yale.edu/neuron/static/docs/programming/hoc_slides.pdf||rel=" noopener noreferrer" target="_blank"]] === |
43 |
43 |
|
|
47 |
+**Level**: beginner(%%) **Type**: slide deck |
|
48 |
+ |
|
49 |
+Slides from a presentation on hoc syntax. Clear and concise. Includes an example of program analysis (walkthrough of code for a model cell generated by the CellBuilder). |
|
50 |
+=== [[A NEURON Programming Tutorial - Part E>>http://web.mit.edu/neuron_v7.4/nrntuthtml/tutorial/tutE.html||rel=" noopener noreferrer" target="_blank"]] === |
|
51 |
+ |
|
52 |
+**Level**: beginner(%%) **Type**: user documentation |
|
53 |
+ |
|
54 |
+After this tutorial, students will be able to save data from the simulations and methods for increasing simulation speed. |
|
55 |
+=== **Advanced** === |
|
56 |
+ |
|
57 |
+=== [[Reaction-Diffusion – Radial Diffusion>>https://neuron.yale.edu/neuron/docs/radial-diffusion||rel=" noopener noreferrer" target="_blank"]] === |
|
58 |
+ |
|
59 |
+**Level**: advanced(%%) **Type**: - |
|
60 |
+ |
|
61 |
+Using NEURON Radial diffusion can be implemented in rxd using multicompartment reactions. By creating a series of shells and borders with reactions between them dependent the diffusion coefficient. |
|
62 |
+=== [[Reaction-Diffusion Example – Calcium Wave>>https://neuron.yale.edu/neuron/docs/reaction-diffusion-calcium-wave||rel=" noopener noreferrer" target="_blank"]] === |
|
63 |
+ |
|
64 |
+**Level**: advanced(%%) **Type**: interactive tutorial |
|
65 |
+ |
|
66 |
+The model presented in this tutorial generates Ca2+ waves and is a simplification of the model we used in Neymotin et al., 2015. |
|
67 |
+=== [[Reaction-Diffusion – 3D/Hybrid Intracellular Tutorial>>https://neuron.yale.edu/neuron/docs/3dhybrid-intracellular-tutorial||rel=" noopener noreferrer" target="_blank"]] === |
|
68 |
+ |
|
69 |
+**Level**: advanced(%%) **Type**: interactive tutorial |
|
70 |
+ |
|
71 |
+This tutorial provides an overview of how to set up a simple travelling wave in both cases. |
|
72 |
+=== [[Reaction-Diffusion – Initialization strategies>>https://neuron.yale.edu/neuron/docs/initialization-strategies||rel=" noopener noreferrer" target="_blank"]] === |
|
73 |
+ |
|
74 |
+**Level**: advanced(%%) **Type**: interactive tutorial |
|
75 |
+ |
|
76 |
+In this tutorial you will learn how to implement cell signalling function in the reaction-diffusion system by characterising your problems by the answers to three questions: (1) Where do the dynamics occur, (2) Who are the actors, and (3) How do they interact? |
|
77 |
+=== [[Ball and Stick model part 3>>https://neuron.yale.edu/neuron/docs/ball-and-stick-model-part-3||rel=" noopener noreferrer" target="_blank"]] === |
|
78 |
+ |
|
79 |
+**Level**: advanced(%%) **Type**: user documentation |
|
80 |
+ |
|
81 |
+=== [[Using the CellBuilder – Introduction>>https://neuron.yale.edu/neuron/static/docs/cbtut/main.html||rel=" noopener noreferrer" target="_blank"]] === |
|
82 |
+ |
|
83 |
+**Level**: advanced(%%) **Type**: interactive tutorial |
|
84 |
+ |
|
85 |
+The following tutorials show how to use the CellBuilder, a powerful and convenient tool for constructing and managing models of individual neurons. It breaks the job of model specification into a sequence of tasks: |
|
86 |
+1. Setting up model topology (branching pattern). |
|
87 |
+2. Grouping sections with shared properties into subsets. |
|
88 |
+3. Assigning geometric properties (length, diameter) to subsets or individual sections, and specifying a discretization strategy (i.e. how to set nseg). |
|
89 |
+4. Assigning biophysical properties (Ra, cm, ion channels, buffers, pumps, etc.) to subsets or individual sections. |
|
90 |
+=== [[Using Import3D – Exploring morphometric data and fixing problems>>https://neuron.yale.edu/neuron/docs/import3d/fix_problems||rel=" noopener noreferrer" target="_blank"]] === |
|
91 |
+ |
|
92 |
+**Level**: advanced(%%) **Type**: user documentation |
|
93 |
+ |
|
94 |
+Import3D tool can be used to translate common varieties of cellular morphometric data into a CellBuilder that specifies the anatomical properties of a model neuron. This Tutorial will guide you through how to fix problems in your morphometric data. |
|
95 |
+=== [[Randomness in NEURON models– The solution>>https://neuron.yale.edu/neuron/docs/solution||rel=" noopener noreferrer" target="_blank"]] === |
|
96 |
+ |
|
97 |
+**Level**: advanced(%%) **Type**: user documentation |
|
98 |
+ |
|
99 |
+In this part of the tutorial we will show you how to give NetStim its own random number generator. |
|
100 |
+=== [[Segmentation intro: Dealing with simulations that generate a lot of data>>https://neuron.yale.edu/neuron/docs/dealing-simulations-generate-lot-data||rel=" noopener noreferrer" target="_blank"]] === |
|
101 |
+ |
|
102 |
+**Level**: advanced(%%) **Type**: user documentation |
|
103 |
+ |
|
104 |
+How to deal with simulations that generate a lot of data that must be saved? We will showcase different approaches. |
|
105 |
+=== [[Using the Channel Builder – Creating a channel from an HH-style specification>>https://neuron.yale.edu/neuron/static/docs/chanlbild/hhstyle/outline.html||rel=" noopener noreferrer" target="_blank"]] === |
|
106 |
+ |
|
107 |
+**Level**: advanced(%%) **Type**: interactive tutorial |
|
108 |
+ |
|
109 |
+Our goal is to implement a new voltage-gated macroscopic current whose properties are described by HH-style equations. |
|
110 |
+=== [[Using the Channel Builder – Creating a channel from a kinetic scheme specification>>https://neuron.yale.edu/neuron/static/docs/chanlbild/kinetic/outline.html||rel=" noopener noreferrer" target="_blank"]] === |
|
111 |
+ |
|
112 |
+**Level**: advanced(%%) **Type**: interactive tutorial |
|
113 |
+ |
|
114 |
+Here we will implement a new voltage-gated macroscopic current whose properties are described by a family of chemical reactions. |
|
115 |
+=== [[Randomness in NEURON models– Source code that demonstrates the solution>>https://neuron.yale.edu/neuron/docs/source-code-demonstrates-solution||rel=" noopener noreferrer" target="_blank"]] === |
|
116 |
+ |
|
117 |
+**Level**: advanced(%%) **Type**: user documentation |
|
118 |
+ |
|
119 |
+=== [[Using the Network Builder – Introduction to Network Construction>>https://neuron.yale.edu/neuron/static/docs/netbuild/intro.html||rel=" noopener noreferrer" target="_blank"]] === |
|
120 |
+ |
|
121 |
+**Level**: advanced(%%) **Type**: user documentation |
|
122 |
+ |
|
123 |
+=== [[Python introduction>>https://neuron.yale.edu/neuron/docs/python-introduction||rel=" noopener noreferrer" target="_blank"]] === |
|
124 |
+ |
|
125 |
+**Level**: advanced(%%) **Type**: user documentation |
|
126 |
+ |
|
127 |
+This page provides a brief introduction to Python syntax, Variables, Lists and Dicts, For loops and iterators, Functions, Classes, Importing modules, Writing and reading files with Pickling. |
|
128 |
+=== [[Reaction-Diffusion Example – RxD with MOD files>>https://neuron.yale.edu/neuron/docs/rxd-mod-files||rel=" noopener noreferrer" target="_blank"]] === |
|
129 |
+ |
|
130 |
+**Level**: advanced(%%) **Type**: user documentation |
|
131 |
+ |
|
132 |
+NEURON's reaction-diffusion infrastructure can be used to readily allow intracellular concentrations to respond to currents generated in MOD files. This example shows you a simple model with just a single point soma, of length and diameter 10 microns, with Hodgkin-Huxley kinetics, and dynamic sodium (declared using rxd but without any additional kinetics). |
|
133 |
+=== [[Segmenting a simulation of a model network - Introduction>>https://neuron.yale.edu/neuron/docs/segmenting-simulation-model-network||rel=" noopener noreferrer" target="_blank"]] === |
|
134 |
+ |
|
135 |
+**Level**: advanced(%%) **Type**: user documentation |
|
136 |
+ |
|
137 |
+=== [[Using the Network Builder – Tutorial 1: Making Networks of Artificial Neurons>>https://neuron.yale.edu/neuron/static/docs/netbuild/artnet/outline.html||rel=" noopener noreferrer" target="_blank"]] === |
|
138 |
+ |
|
139 |
+**Level**: advanced(%%) **Type**: interactive tutorial |
|
140 |
+ |
|
141 |
+Learn how to Artificial Integrate and Fire cell with a synapse that is driven by an afferent burst of spikes. |
|
142 |
+=== [[Reaction-Diffusion Example – Restricting a reaction to part of a region>>https://neuron.yale.edu/neuron/docs/example-restricting-reaction-part-region||rel=" noopener noreferrer" target="_blank"]] === |
|
143 |
+ |
|
144 |
+**Level**: advanced(%%) **Type**: user documentation |
|
145 |
+ |
|
146 |
+Implementation example for the restriction of the reaction to part of a region. |
|
147 |
+=== [[Segmenting a simulation of a model cell - Introduction>>https://neuron.yale.edu/neuron/docs/segmenting-simulation-model-cell||rel=" noopener noreferrer" target="_blank"]] === |
|
148 |
+ |
|
149 |
+**Level**: advanced(%%) **Type**: user documentation |
|
150 |
+ |
|
151 |
+=== [[Scripting NEURON basics>>https://neuron.yale.edu/neuron/docs/scripting-neuron-basics||rel=" noopener noreferrer" target="_blank"]] === |
|
152 |
+ |
|
153 |
+**Level**: advanced(%%) **Type**: user documentation |
|
154 |
+ |
|
155 |
+The objectives of this part of the tutorial are to get familiar with basic operations of NEURON using Python. In this worksheet we will: Create a passive cell membrane in NEURON. Create a synaptic stimulus onto the neuron. Modify parameters of the membrane and stimulus. Visualize results with bokeh. |
|
156 |
+=== [[Reaction-Diffusion – Thresholds>>https://neuron.yale.edu/neuron/docs/reaction-diffusion-thresholds||rel=" noopener noreferrer" target="_blank"]] === |
|
157 |
+ |
|
158 |
+**Level**: advanced(%%) **Type**: interactive tutorial |
|
159 |
+ |
|
160 |
+Learn how to scale reaction rates by a function of the form f(x) for suitably chosen a and m to approximately threshold them by a concentration. |
|
161 |
+=== [[Randomness in NEURON models>>https://neuron.yale.edu/neuron/docs/randomness-neuron-models||rel=" noopener noreferrer" target="_blank"]] === |
|
162 |
+ |
|
163 |
+**Level**: advanced(%%) **Type**: user documentation |
|
164 |
+ |
|
165 |
+We will touch upon the following subjects in this tutorial: |
|
166 |
+How to create model specification code that employs randomization to avoid undesired correlations between parameters, and to produce a model cell or network that has the same architecture and biophysical properties, and generates the same simulation results regardless of whether it is run on serial or parallel hardware. |
|
167 |
+How to generate spike streams or other signals that fluctuate in ways that are statistically independent of each other. |
|
168 |
+=== [[Using the CellBuilder– Specifying parameterized variation of biophysical properties>>https://neuron.yale.edu/neuron/static/docs/cbtut/parameterized/outline.html||rel=" noopener noreferrer" target="_blank"]] === |
|
169 |
+ |
|
170 |
+**Level**: advanced(%%) **Type**: interactive tutorial |
|
171 |
+ |
|
172 |
+How to make one or more biophysical properties vary systematically with position in space. |
|
173 |
+=== [[Using Import3D – An introduction>>https://neuron.yale.edu/neuron/docs/import3d||rel=" noopener noreferrer" target="_blank"]] === |
|
174 |
+ |
|
175 |
+**Level**: advanced(%%) **Type**: user documentation |
|
176 |
+ |
|
177 |
+Import3D tool can be used to translate common varieties of cellular morphometric data into a CellBuilder that specifies the anatomical properties of a model neuron. This Tutorial will guide you in reading a morphometric data file and converting it to a NEURON model as well as |
|
178 |
+exploring morphometric data and fixing problems. |
|
179 |
+=== [[Segmenting a simulation of a model network – 1. Implement and test the computational model itself>>https://neuron.yale.edu/neuron/docs/1-implement-and-test-computational-model-itself-0||rel=" noopener noreferrer" target="_blank"]] === |
|
180 |
+ |
|
181 |
+**Level**: advanced(%%) **Type**: user documentation |
|
182 |
+ |
|
183 |
+=== [[Segmenting a simulation of a model network – 2. Run a "complete" simulation and save its results>>https://neuron.yale.edu/neuron/docs/2-run-complete-simulation-and-save-its-results-0||rel=" noopener noreferrer" target="_blank"]] === |
|
184 |
+ |
|
185 |
+**Level**: advanced(%%) **Type**: user documentation |
|
186 |
+ |
|
187 |
+=== [[Segmenting a simulation of a model cell – 2. Run a "complete" simulation and save its results>>https://neuron.yale.edu/neuron/docs/2-run-complete-simulation-and-save-its-results||rel=" noopener noreferrer" target="_blank"]] === |
|
188 |
+ |
|
189 |
+**Level**: advanced(%%) **Type**: user documentation |
|
190 |
+ |
|
191 |
+=== [[Segmenting a simulation of a model cell – 1. Implement and test the computational model itself>>https://neuron.yale.edu/neuron/docs/1-implement-and-test-computational-model-itself||rel=" noopener noreferrer" target="_blank"]] === |
|
192 |
+ |
|
193 |
+**Level**: advanced(%%) **Type**: user documentation |
|
194 |
+ |
|
195 |
+=== [[Using NEURON's Optimization Tools – Tutorial 2 : Fitting a model to data>>https://neuron.yale.edu/neuron/static/docs/optimiz/model/outline.html||rel=" noopener noreferrer" target="_blank"]] === |
|
196 |
+ |
|
197 |
+**Level**: advanced(%%) **Type**: user documentation |
|
198 |
+ |
|
199 |
+We will go over how to create an "unoptimized" model, set up a current clamp experiment on this model, configure a MultipleRunFitter to do a "run fitness" optimization, load the Experimental Data into the iclamp Run Fitness Generator, specify the parameters that will be adjusted and finally perform the optimization. |
|
200 |
+=== [[Reaction-Diffusion – Hodgkin-Huxley using rxd>>https://neuron.yale.edu/neuron/docs/hodgkin-huxley-using-rxd||rel=" noopener noreferrer" target="_blank"]] === |
|
201 |
+ |
|
202 |
+**Level**: advanced(%%) **Type**: interactive tutorial |
|
203 |
+ |
|
204 |
+In this tutorial you will learn how to set the proper parameters for the Hodgkin–Huxley model in NEURON. |
|
205 |
+=== [[Using the CellBuilder – Creating a stylised ("stick-figure") model cell>>https://neuron.yale.edu/neuron/static/docs/cbtut/stylized/outline.html||rel=" noopener noreferrer" target="_blank"]] === |
|
206 |
+ |
|
207 |
+**Level**: advanced(%%) **Type**: - |
|
208 |
+ |
|
209 |
+Learn how to build an extremely simplified model of a pyramidal cell. |
|
210 |
+=== [[Ball and Stick model part 2>>https://neuron.yale.edu/neuron/docs/ball-and-stick-model-part-2||rel=" noopener noreferrer" target="_blank"]] === |
|
211 |
+ |
|
212 |
+**Level**: advanced(%%) **Type**: user documentation |
|
213 |
+ |
|
214 |
+=== [[Reaction-Diffusion Example – Circadian rhythm>>https://neuron.yale.edu/neuron/docs/example-circadian-rhythm||rel=" noopener noreferrer" target="_blank"]] === |
|
215 |
+ |
|
216 |
+**Level**: advanced(%%) **Type**: user documentation |
|
217 |
+ |
|
218 |
+Here we develop a NEURON implementation of the Leloup-Goldbeter model for circadian rhythms in Drosophila. In this example NEURON's h library and its standard run system are being used as well as matplotlib to plot concentrations of circadian proteins over time. |
|
219 |
+=== [[Segmenting a simulation of a model cell – 3. Run a segmented simulation and save its results>>https://neuron.yale.edu/neuron/docs/3-run-segmented-simulation-and-save-its-results||rel=" noopener noreferrer" target="_blank"]] === |
|
220 |
+ |
|
221 |
+**Level**: advanced(%%) **Type**: user documentation |
|
222 |
+ |
|
223 |
+=== [[ModelView: Compact display of parameters for NEURON models.>>https://neuron.yale.edu/neuron/static/papers/mview/modelviewhbp2004.html||rel=" noopener noreferrer" target="_blank"]] === |
|
224 |
+ |
|
225 |
+**Level**: advanced(%%) **Type**: user documentation |
|
226 |
+ |
|
227 |
+This example demonstrates how ModelView can explore a NEURON model. |
|
228 |
+=== [[Segmenting a simulation of a model network – 3. Run a segmented simulation and save its results>>https://neuron.yale.edu/neuron/docs/3-run-segmented-simulation-and-save-its-results-0||rel=" noopener noreferrer" target="_blank"]] === |
|
229 |
+ |
|
230 |
+**Level**: advanced(%%) **Type**: user documentation |
|
231 |
+ |
|
232 |
+=== [[Segmenting a simulation of a model network – 4. Reconstitute and verify the "complete" simulation results>>https://neuron.yale.edu/neuron/docs/4-reconstitute-and-verify-complete-simulation-results-0||rel=" noopener noreferrer" target="_blank"]] === |
|
233 |
+ |
|
234 |
+**Level**: advanced(%%) **Type**: user documentation |
|
235 |
+ |
|
236 |
+ |