Changes for page Neuron

Last modified by abonard on 2025/04/10 15:17

From version 81.1
edited by abonard
on 2025/04/10 15:16
Change comment: There is no comment for this version
To version 71.1
edited by abonard
on 2025/04/10 15:15
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -2,8 +2,6 @@
2 2  
3 3  * ((( ==== **[[Beginner >>||anchor = "HBeginner-1"]]** ==== )))
4 4  
5 -* ((( ==== **[[Advanced >>||anchor = "HAdvanced-1"]]** ==== )))
6 -
7 7  === **Beginner** ===
8 8  
9 9  === [[A NEURON Programming Tutorial - part C>>http://web.mit.edu/neuron_v7.4/nrntuthtml/tutorial/tutC.html||rel=" noopener noreferrer" target="_blank"]] ===
... ... @@ -42,59 +42,4 @@
42 42  **Level**: beginner(%%) **Type**: interactive tutorial
43 43  
44 44  In this beginner tutorial you will learn how to make a simple model using hoc and how to use NEURON's graphical tools to create an interface for running simulations and to modify the model itself.
45 -=== [[The hoc programming language>>https://neuron.yale.edu/neuron/static/docs/programming/hoc_slides.pdf||rel=" noopener noreferrer" target="_blank"]] ===
46 46  
47 -**Level**: beginner(%%) **Type**: slide deck
48 -
49 -Slides from a presentation on hoc syntax. Clear and concise. Includes an example of program analysis (walkthrough of code for a model cell generated by the CellBuilder).
50 -=== [[A NEURON Programming Tutorial - Part E>>http://web.mit.edu/neuron_v7.4/nrntuthtml/tutorial/tutE.html||rel=" noopener noreferrer" target="_blank"]] ===
51 -
52 -**Level**: beginner(%%) **Type**: user documentation
53 -
54 -After this tutorial, students will be able to save data from the simulations and methods for increasing simulation speed.
55 -=== **Advanced** ===
56 -
57 -=== [[Reaction-Diffusion – Radial Diffusion>>https://neuron.yale.edu/neuron/docs/radial-diffusion||rel=" noopener noreferrer" target="_blank"]] ===
58 -
59 -**Level**: advanced(%%) **Type**: -
60 -
61 -Using NEURON Radial diffusion can be implemented in rxd using multicompartment reactions. By creating a series of shells and borders with reactions between them dependent the diffusion coefficient.
62 -=== [[Reaction-Diffusion Example – Calcium Wave>>https://neuron.yale.edu/neuron/docs/reaction-diffusion-calcium-wave||rel=" noopener noreferrer" target="_blank"]] ===
63 -
64 -**Level**: advanced(%%) **Type**: interactive tutorial
65 -
66 -The model presented in this tutorial generates Ca2+ waves and is a simplification of the model we used in Neymotin et al., 2015.
67 -=== [[Reaction-Diffusion – 3D/Hybrid Intracellular Tutorial>>https://neuron.yale.edu/neuron/docs/3dhybrid-intracellular-tutorial||rel=" noopener noreferrer" target="_blank"]] ===
68 -
69 -**Level**: advanced(%%) **Type**: interactive tutorial
70 -
71 -This tutorial provides an overview of how to set up a simple travelling wave in both cases.
72 -=== [[Reaction-Diffusion – Initialization strategies>>https://neuron.yale.edu/neuron/docs/initialization-strategies||rel=" noopener noreferrer" target="_blank"]] ===
73 -
74 -**Level**: advanced(%%) **Type**: interactive tutorial
75 -
76 -In this tutorial you will learn how to implement cell signalling function in the reaction-diffusion system by characterising your problems by the answers to three questions: (1) Where do the dynamics occur, (2) Who are the actors, and (3) How do they interact?
77 -=== [[Ball and Stick model part 3>>https://neuron.yale.edu/neuron/docs/ball-and-stick-model-part-3||rel=" noopener noreferrer" target="_blank"]] ===
78 -
79 -**Level**: advanced(%%) **Type**: user documentation
80 -
81 -=== [[Using the CellBuilder – Introduction>>https://neuron.yale.edu/neuron/static/docs/cbtut/main.html||rel=" noopener noreferrer" target="_blank"]] ===
82 -
83 -**Level**: advanced(%%) **Type**: interactive tutorial
84 -
85 -The following tutorials show how to use the CellBuilder, a powerful and convenient tool for constructing and managing models of individual neurons. It breaks the job of model specification into a sequence of tasks:
86 -1. Setting up model topology (branching pattern).
87 -2. Grouping sections with shared properties into subsets.
88 -3. Assigning geometric properties (length, diameter) to subsets or individual sections, and specifying a discretization strategy (i.e. how to set nseg).
89 -4. Assigning biophysical properties (Ra, cm, ion channels, buffers, pumps, etc.) to subsets or individual sections.
90 -=== [[Using Import3D – Exploring morphometric data and fixing problems>>https://neuron.yale.edu/neuron/docs/import3d/fix_problems||rel=" noopener noreferrer" target="_blank"]] ===
91 -
92 -**Level**: advanced(%%) **Type**: user documentation
93 -
94 -Import3D tool can be used to translate common varieties of cellular morphometric data into a CellBuilder that specifies the anatomical properties of a model neuron. This Tutorial will guide you through how to fix problems in your morphometric data.
95 -=== [[Randomness in NEURON models– The solution>>https://neuron.yale.edu/neuron/docs/solution||rel=" noopener noreferrer" target="_blank"]] ===
96 -
97 -**Level**: advanced(%%) **Type**: user documentation
98 -
99 -In this part of the tutorial we will show you how to give NetStim its own random number generator.
100 -