Changes for page Neuron

Last modified by abonard on 2025/04/10 15:17

From version 9.1
edited by abonard
on 2025/04/10 15:07
Change comment: There is no comment for this version
To version 17.1
edited by abonard
on 2025/04/10 15:07
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -2,6 +2,8 @@
2 2  
3 3  * ((( ==== **[[Beginner >>||anchor = "HBeginner-1"]]** ==== )))
4 4  
5 +* ((( ==== **[[Advanced >>||anchor = "HAdvanced-1"]]** ==== )))
6 +
5 5  === **Beginner** ===
6 6  
7 7  === [[A NEURON Programming Tutorial - part C>>http://web.mit.edu/neuron_v7.4/nrntuthtml/tutorial/tutC.html||rel=" noopener noreferrer" target="_blank"]] ===
... ... @@ -40,4 +40,49 @@
40 40  **Level**: beginner(%%) **Type**: interactive tutorial
41 41  
42 42  In this beginner tutorial you will learn how to make a simple model using hoc and how to use NEURON's graphical tools to create an interface for running simulations and to modify the model itself.
45 +=== [[The hoc programming language>>https://neuron.yale.edu/neuron/static/docs/programming/hoc_slides.pdf||rel=" noopener noreferrer" target="_blank"]] ===
43 43  
47 +**Level**: beginner(%%) **Type**: slide deck
48 +
49 +Slides from a presentation on hoc syntax. Clear and concise. Includes an example of program analysis (walkthrough of code for a model cell generated by the CellBuilder).
50 +=== [[A NEURON Programming Tutorial - Part E>>http://web.mit.edu/neuron_v7.4/nrntuthtml/tutorial/tutE.html||rel=" noopener noreferrer" target="_blank"]] ===
51 +
52 +**Level**: beginner(%%) **Type**: user documentation
53 +
54 +After this tutorial, students will be able to save data from the simulations and methods for increasing simulation speed.
55 +=== **Advanced** ===
56 +
57 +=== [[Reaction-Diffusion – Radial Diffusion>>https://neuron.yale.edu/neuron/docs/radial-diffusion||rel=" noopener noreferrer" target="_blank"]] ===
58 +
59 +**Level**: advanced(%%) **Type**: -
60 +
61 +Using NEURON Radial diffusion can be implemented in rxd using multicompartment reactions. By creating a series of shells and borders with reactions between them dependent the diffusion coefficient.
62 +=== [[Reaction-Diffusion Example – Calcium Wave>>https://neuron.yale.edu/neuron/docs/reaction-diffusion-calcium-wave||rel=" noopener noreferrer" target="_blank"]] ===
63 +
64 +**Level**: advanced(%%) **Type**: interactive tutorial
65 +
66 +The model presented in this tutorial generates Ca2+ waves and is a simplification of the model we used in Neymotin et al., 2015.
67 +=== [[Reaction-Diffusion – 3D/Hybrid Intracellular Tutorial>>https://neuron.yale.edu/neuron/docs/3dhybrid-intracellular-tutorial||rel=" noopener noreferrer" target="_blank"]] ===
68 +
69 +**Level**: advanced(%%) **Type**: interactive tutorial
70 +
71 +This tutorial provides an overview of how to set up a simple travelling wave in both cases.
72 +=== [[Reaction-Diffusion – Initialization strategies>>https://neuron.yale.edu/neuron/docs/initialization-strategies||rel=" noopener noreferrer" target="_blank"]] ===
73 +
74 +**Level**: advanced(%%) **Type**: interactive tutorial
75 +
76 +In this tutorial you will learn how to implement cell signalling function in the reaction-diffusion system by characterising your problems by the answers to three questions: (1) Where do the dynamics occur, (2) Who are the actors, and (3) How do they interact?
77 +=== [[Ball and Stick model part 3>>https://neuron.yale.edu/neuron/docs/ball-and-stick-model-part-3||rel=" noopener noreferrer" target="_blank"]] ===
78 +
79 +**Level**: advanced(%%) **Type**: user documentation
80 +
81 +=== [[Using the CellBuilder – Introduction>>https://neuron.yale.edu/neuron/static/docs/cbtut/main.html||rel=" noopener noreferrer" target="_blank"]] ===
82 +
83 +**Level**: advanced(%%) **Type**: interactive tutorial
84 +
85 +The following tutorials show how to use the CellBuilder, a powerful and convenient tool for constructing and managing models of individual neurons. It breaks the job of model specification into a sequence of tasks:
86 +1. Setting up model topology (branching pattern).
87 +2. Grouping sections with shared properties into subsets.
88 +3. Assigning geometric properties (length, diameter) to subsets or individual sections, and specifying a discretization strategy (i.e. how to set nseg).
89 +4. Assigning biophysical properties (Ra, cm, ion channels, buffers, pumps, etc.) to subsets or individual sections.
90 +