... |
... |
@@ -148,4 +148,89 @@ |
148 |
148 |
|
149 |
149 |
**Level**: advanced(%%) **Type**: user documentation |
150 |
150 |
|
|
151 |
+=== [[Scripting NEURON basics>>https://neuron.yale.edu/neuron/docs/scripting-neuron-basics||rel=" noopener noreferrer" target="_blank"]] === |
151 |
151 |
|
|
153 |
+**Level**: advanced(%%) **Type**: user documentation |
|
154 |
+ |
|
155 |
+The objectives of this part of the tutorial are to get familiar with basic operations of NEURON using Python. In this worksheet we will: Create a passive cell membrane in NEURON. Create a synaptic stimulus onto the neuron. Modify parameters of the membrane and stimulus. Visualize results with bokeh. |
|
156 |
+=== [[Reaction-Diffusion – Thresholds>>https://neuron.yale.edu/neuron/docs/reaction-diffusion-thresholds||rel=" noopener noreferrer" target="_blank"]] === |
|
157 |
+ |
|
158 |
+**Level**: advanced(%%) **Type**: interactive tutorial |
|
159 |
+ |
|
160 |
+Learn how to scale reaction rates by a function of the form f(x) for suitably chosen a and m to approximately threshold them by a concentration. |
|
161 |
+=== [[Randomness in NEURON models>>https://neuron.yale.edu/neuron/docs/randomness-neuron-models||rel=" noopener noreferrer" target="_blank"]] === |
|
162 |
+ |
|
163 |
+**Level**: advanced(%%) **Type**: user documentation |
|
164 |
+ |
|
165 |
+We will touch upon the following subjects in this tutorial: |
|
166 |
+How to create model specification code that employs randomization to avoid undesired correlations between parameters, and to produce a model cell or network that has the same architecture and biophysical properties, and generates the same simulation results regardless of whether it is run on serial or parallel hardware. |
|
167 |
+How to generate spike streams or other signals that fluctuate in ways that are statistically independent of each other. |
|
168 |
+=== [[Using the CellBuilder– Specifying parameterized variation of biophysical properties>>https://neuron.yale.edu/neuron/static/docs/cbtut/parameterized/outline.html||rel=" noopener noreferrer" target="_blank"]] === |
|
169 |
+ |
|
170 |
+**Level**: advanced(%%) **Type**: interactive tutorial |
|
171 |
+ |
|
172 |
+How to make one or more biophysical properties vary systematically with position in space. |
|
173 |
+=== [[Using Import3D – An introduction>>https://neuron.yale.edu/neuron/docs/import3d||rel=" noopener noreferrer" target="_blank"]] === |
|
174 |
+ |
|
175 |
+**Level**: advanced(%%) **Type**: user documentation |
|
176 |
+ |
|
177 |
+Import3D tool can be used to translate common varieties of cellular morphometric data into a CellBuilder that specifies the anatomical properties of a model neuron. This Tutorial will guide you in reading a morphometric data file and converting it to a NEURON model as well as |
|
178 |
+exploring morphometric data and fixing problems. |
|
179 |
+=== [[Segmenting a simulation of a model network – 1. Implement and test the computational model itself>>https://neuron.yale.edu/neuron/docs/1-implement-and-test-computational-model-itself-0||rel=" noopener noreferrer" target="_blank"]] === |
|
180 |
+ |
|
181 |
+**Level**: advanced(%%) **Type**: user documentation |
|
182 |
+ |
|
183 |
+=== [[Segmenting a simulation of a model network – 2. Run a "complete" simulation and save its results>>https://neuron.yale.edu/neuron/docs/2-run-complete-simulation-and-save-its-results-0||rel=" noopener noreferrer" target="_blank"]] === |
|
184 |
+ |
|
185 |
+**Level**: advanced(%%) **Type**: user documentation |
|
186 |
+ |
|
187 |
+=== [[Segmenting a simulation of a model cell – 2. Run a "complete" simulation and save its results>>https://neuron.yale.edu/neuron/docs/2-run-complete-simulation-and-save-its-results||rel=" noopener noreferrer" target="_blank"]] === |
|
188 |
+ |
|
189 |
+**Level**: advanced(%%) **Type**: user documentation |
|
190 |
+ |
|
191 |
+=== [[Segmenting a simulation of a model cell – 1. Implement and test the computational model itself>>https://neuron.yale.edu/neuron/docs/1-implement-and-test-computational-model-itself||rel=" noopener noreferrer" target="_blank"]] === |
|
192 |
+ |
|
193 |
+**Level**: advanced(%%) **Type**: user documentation |
|
194 |
+ |
|
195 |
+=== [[Using NEURON's Optimization Tools – Tutorial 2 : Fitting a model to data>>https://neuron.yale.edu/neuron/static/docs/optimiz/model/outline.html||rel=" noopener noreferrer" target="_blank"]] === |
|
196 |
+ |
|
197 |
+**Level**: advanced(%%) **Type**: user documentation |
|
198 |
+ |
|
199 |
+We will go over how to create an "unoptimized" model, set up a current clamp experiment on this model, configure a MultipleRunFitter to do a "run fitness" optimization, load the Experimental Data into the iclamp Run Fitness Generator, specify the parameters that will be adjusted and finally perform the optimization. |
|
200 |
+=== [[Reaction-Diffusion – Hodgkin-Huxley using rxd>>https://neuron.yale.edu/neuron/docs/hodgkin-huxley-using-rxd||rel=" noopener noreferrer" target="_blank"]] === |
|
201 |
+ |
|
202 |
+**Level**: advanced(%%) **Type**: interactive tutorial |
|
203 |
+ |
|
204 |
+In this tutorial you will learn how to set the proper parameters for the Hodgkin–Huxley model in NEURON. |
|
205 |
+=== [[Using the CellBuilder – Creating a stylised ("stick-figure") model cell>>https://neuron.yale.edu/neuron/static/docs/cbtut/stylized/outline.html||rel=" noopener noreferrer" target="_blank"]] === |
|
206 |
+ |
|
207 |
+**Level**: advanced(%%) **Type**: - |
|
208 |
+ |
|
209 |
+Learn how to build an extremely simplified model of a pyramidal cell. |
|
210 |
+=== [[Ball and Stick model part 2>>https://neuron.yale.edu/neuron/docs/ball-and-stick-model-part-2||rel=" noopener noreferrer" target="_blank"]] === |
|
211 |
+ |
|
212 |
+**Level**: advanced(%%) **Type**: user documentation |
|
213 |
+ |
|
214 |
+=== [[Reaction-Diffusion Example – Circadian rhythm>>https://neuron.yale.edu/neuron/docs/example-circadian-rhythm||rel=" noopener noreferrer" target="_blank"]] === |
|
215 |
+ |
|
216 |
+**Level**: advanced(%%) **Type**: user documentation |
|
217 |
+ |
|
218 |
+Here we develop a NEURON implementation of the Leloup-Goldbeter model for circadian rhythms in Drosophila. In this example NEURON's h library and its standard run system are being used as well as matplotlib to plot concentrations of circadian proteins over time. |
|
219 |
+=== [[Segmenting a simulation of a model cell – 3. Run a segmented simulation and save its results>>https://neuron.yale.edu/neuron/docs/3-run-segmented-simulation-and-save-its-results||rel=" noopener noreferrer" target="_blank"]] === |
|
220 |
+ |
|
221 |
+**Level**: advanced(%%) **Type**: user documentation |
|
222 |
+ |
|
223 |
+=== [[ModelView: Compact display of parameters for NEURON models.>>https://neuron.yale.edu/neuron/static/papers/mview/modelviewhbp2004.html||rel=" noopener noreferrer" target="_blank"]] === |
|
224 |
+ |
|
225 |
+**Level**: advanced(%%) **Type**: user documentation |
|
226 |
+ |
|
227 |
+This example demonstrates how ModelView can explore a NEURON model. |
|
228 |
+=== [[Segmenting a simulation of a model network – 3. Run a segmented simulation and save its results>>https://neuron.yale.edu/neuron/docs/3-run-segmented-simulation-and-save-its-results-0||rel=" noopener noreferrer" target="_blank"]] === |
|
229 |
+ |
|
230 |
+**Level**: advanced(%%) **Type**: user documentation |
|
231 |
+ |
|
232 |
+=== [[Segmenting a simulation of a model network – 4. Reconstitute and verify the "complete" simulation results>>https://neuron.yale.edu/neuron/docs/4-reconstitute-and-verify-complete-simulation-results-0||rel=" noopener noreferrer" target="_blank"]] === |
|
233 |
+ |
|
234 |
+**Level**: advanced(%%) **Type**: user documentation |
|
235 |
+ |
|
236 |
+ |