| ... | ... | @@ -165,4 +165,46 @@ | 
              
                    | 165 | 165 | We will touch upon the following subjects in this tutorial: | 
              
                    | 166 | 166 | How to create model specification code that employs randomization to avoid undesired correlations between parameters, and to produce a model cell or network that has the same architecture and biophysical properties, and generates the same simulation results regardless of whether it is run on serial or parallel hardware. | 
              
                    | 167 | 167 | How to generate spike streams or other signals that fluctuate in ways that are statistically independent of each other. | 
              
                    |  | 168 | +=== [[Using the CellBuilder– Specifying parameterized variation of biophysical properties>>https://neuron.yale.edu/neuron/static/docs/cbtut/parameterized/outline.html||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    | 168 | 168 |  | 
              
                    |  | 170 | +**Level**: advanced(%%)  **Type**: interactive tutorial | 
              
                    |  | 171 | + | 
              
                    |  | 172 | +How to make one or more biophysical properties vary systematically with position in space. | 
              
                    |  | 173 | +=== [[Using Import3D – An introduction>>https://neuron.yale.edu/neuron/docs/import3d||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    |  | 174 | + | 
              
                    |  | 175 | +**Level**: advanced(%%)  **Type**: user documentation | 
              
                    |  | 176 | + | 
              
                    |  | 177 | +Import3D tool can be used to translate common varieties of cellular morphometric data into a CellBuilder that specifies the anatomical properties of a model neuron. This Tutorial will guide you in reading a morphometric data file and converting it to a NEURON model as well as | 
              
                    |  | 178 | +exploring morphometric data and fixing problems. | 
              
                    |  | 179 | +=== [[Segmenting a simulation of a model network – 1. Implement and test the computational model itself>>https://neuron.yale.edu/neuron/docs/1-implement-and-test-computational-model-itself-0||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    |  | 180 | + | 
              
                    |  | 181 | +**Level**: advanced(%%)  **Type**: user documentation | 
              
                    |  | 182 | + | 
              
                    |  | 183 | +=== [[Segmenting a simulation of a model network – 2. Run a "complete" simulation and save its results>>https://neuron.yale.edu/neuron/docs/2-run-complete-simulation-and-save-its-results-0||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    |  | 184 | + | 
              
                    |  | 185 | +**Level**: advanced(%%)  **Type**: user documentation | 
              
                    |  | 186 | + | 
              
                    |  | 187 | +=== [[Segmenting a simulation of a model cell – 2. Run a "complete" simulation and save its results>>https://neuron.yale.edu/neuron/docs/2-run-complete-simulation-and-save-its-results||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    |  | 188 | + | 
              
                    |  | 189 | +**Level**: advanced(%%)  **Type**: user documentation | 
              
                    |  | 190 | + | 
              
                    |  | 191 | +=== [[Segmenting a simulation of a model cell – 1. Implement and test the computational model itself>>https://neuron.yale.edu/neuron/docs/1-implement-and-test-computational-model-itself||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    |  | 192 | + | 
              
                    |  | 193 | +**Level**: advanced(%%)  **Type**: user documentation | 
              
                    |  | 194 | + | 
              
                    |  | 195 | +=== [[Using NEURON's Optimization Tools – Tutorial 2 : Fitting a model to data>>https://neuron.yale.edu/neuron/static/docs/optimiz/model/outline.html||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    |  | 196 | + | 
              
                    |  | 197 | +**Level**: advanced(%%)  **Type**: user documentation | 
              
                    |  | 198 | + | 
              
                    |  | 199 | +We will go over how to create an "unoptimized" model, set up a current clamp experiment on this model, configure a MultipleRunFitter to do a "run fitness" optimization, load the Experimental Data into the iclamp Run Fitness Generator, specify the parameters that will be adjusted and finally perform the optimization. | 
              
                    |  | 200 | +=== [[Reaction-Diffusion – Hodgkin-Huxley using rxd>>https://neuron.yale.edu/neuron/docs/hodgkin-huxley-using-rxd||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    |  | 201 | + | 
              
                    |  | 202 | +**Level**: advanced(%%)  **Type**: interactive tutorial | 
              
                    |  | 203 | + | 
              
                    |  | 204 | +In this tutorial you will learn how to set the proper parameters for the Hodgkin–Huxley model in NEURON. | 
              
                    |  | 205 | +=== [[Using the CellBuilder – Creating a stylised ("stick-figure") model cell>>https://neuron.yale.edu/neuron/static/docs/cbtut/stylized/outline.html||rel=" noopener noreferrer" target="_blank"]] === | 
              
                    |  | 206 | + | 
              
                    |  | 207 | +**Level**: advanced(%%)  **Type**: - | 
              
                    |  | 208 | + | 
              
                    |  | 209 | +Learn how to build an extremely simplified model of a pyramidal cell. | 
              
                    |  | 210 | + |