... |
... |
@@ -180,4 +180,62 @@ |
180 |
180 |
|
181 |
181 |
**Level**: advanced(%%) **Type**: user documentation |
182 |
182 |
|
|
183 |
+=== [[Segmenting a simulation of a model network – 2. Run a "complete" simulation and save its results>>https://neuron.yale.edu/neuron/docs/2-run-complete-simulation-and-save-its-results-0||rel=" noopener noreferrer" target="_blank"]] === |
183 |
183 |
|
|
185 |
+**Level**: advanced(%%) **Type**: user documentation |
|
186 |
+ |
|
187 |
+=== [[Segmenting a simulation of a model cell – 2. Run a "complete" simulation and save its results>>https://neuron.yale.edu/neuron/docs/2-run-complete-simulation-and-save-its-results||rel=" noopener noreferrer" target="_blank"]] === |
|
188 |
+ |
|
189 |
+**Level**: advanced(%%) **Type**: user documentation |
|
190 |
+ |
|
191 |
+=== [[Segmenting a simulation of a model cell – 1. Implement and test the computational model itself>>https://neuron.yale.edu/neuron/docs/1-implement-and-test-computational-model-itself||rel=" noopener noreferrer" target="_blank"]] === |
|
192 |
+ |
|
193 |
+**Level**: advanced(%%) **Type**: user documentation |
|
194 |
+ |
|
195 |
+=== [[Using NEURON's Optimization Tools – Tutorial 2 : Fitting a model to data>>https://neuron.yale.edu/neuron/static/docs/optimiz/model/outline.html||rel=" noopener noreferrer" target="_blank"]] === |
|
196 |
+ |
|
197 |
+**Level**: advanced(%%) **Type**: user documentation |
|
198 |
+ |
|
199 |
+We will go over how to create an "unoptimized" model, set up a current clamp experiment on this model, configure a MultipleRunFitter to do a "run fitness" optimization, load the Experimental Data into the iclamp Run Fitness Generator, specify the parameters that will be adjusted and finally perform the optimization. |
|
200 |
+=== [[Reaction-Diffusion – Hodgkin-Huxley using rxd>>https://neuron.yale.edu/neuron/docs/hodgkin-huxley-using-rxd||rel=" noopener noreferrer" target="_blank"]] === |
|
201 |
+ |
|
202 |
+**Level**: advanced(%%) **Type**: interactive tutorial |
|
203 |
+ |
|
204 |
+In this tutorial you will learn how to set the proper parameters for the Hodgkin–Huxley model in NEURON. |
|
205 |
+=== [[Using the CellBuilder – Creating a stylised ("stick-figure") model cell>>https://neuron.yale.edu/neuron/static/docs/cbtut/stylized/outline.html||rel=" noopener noreferrer" target="_blank"]] === |
|
206 |
+ |
|
207 |
+**Level**: advanced(%%) **Type**: - |
|
208 |
+ |
|
209 |
+Learn how to build an extremely simplified model of a pyramidal cell. |
|
210 |
+=== [[Ball and Stick model part 2>>https://neuron.yale.edu/neuron/docs/ball-and-stick-model-part-2||rel=" noopener noreferrer" target="_blank"]] === |
|
211 |
+ |
|
212 |
+**Level**: advanced(%%) **Type**: user documentation |
|
213 |
+ |
|
214 |
+=== [[Reaction-Diffusion Example – Circadian rhythm>>https://neuron.yale.edu/neuron/docs/example-circadian-rhythm||rel=" noopener noreferrer" target="_blank"]] === |
|
215 |
+ |
|
216 |
+**Level**: advanced(%%) **Type**: user documentation |
|
217 |
+ |
|
218 |
+Here we develop a NEURON implementation of the Leloup-Goldbeter model for circadian rhythms in Drosophila. In this example NEURON's h library and its standard run system are being used as well as matplotlib to plot concentrations of circadian proteins over time. |
|
219 |
+=== [[Segmenting a simulation of a model cell – 3. Run a segmented simulation and save its results>>https://neuron.yale.edu/neuron/docs/3-run-segmented-simulation-and-save-its-results||rel=" noopener noreferrer" target="_blank"]] === |
|
220 |
+ |
|
221 |
+**Level**: advanced(%%) **Type**: user documentation |
|
222 |
+ |
|
223 |
+=== [[ModelView: Compact display of parameters for NEURON models.>>https://neuron.yale.edu/neuron/static/papers/mview/modelviewhbp2004.html||rel=" noopener noreferrer" target="_blank"]] === |
|
224 |
+ |
|
225 |
+**Level**: advanced(%%) **Type**: user documentation |
|
226 |
+ |
|
227 |
+This example demonstrates how ModelView can explore a NEURON model. |
|
228 |
+=== [[Segmenting a simulation of a model network – 3. Run a segmented simulation and save its results>>https://neuron.yale.edu/neuron/docs/3-run-segmented-simulation-and-save-its-results-0||rel=" noopener noreferrer" target="_blank"]] === |
|
229 |
+ |
|
230 |
+**Level**: advanced(%%) **Type**: user documentation |
|
231 |
+ |
|
232 |
+=== [[Segmenting a simulation of a model network – 4. Reconstitute and verify the "complete" simulation results>>https://neuron.yale.edu/neuron/docs/4-reconstitute-and-verify-complete-simulation-results-0||rel=" noopener noreferrer" target="_blank"]] === |
|
233 |
+ |
|
234 |
+**Level**: advanced(%%) **Type**: user documentation |
|
235 |
+ |
|
236 |
+=== [[Using NEURON's Optimization Tools – Tutorial 1 : Fitting a function to data>>https://neuron.yale.edu/neuron/static/docs/optimiz/func/outline.html||rel=" noopener noreferrer" target="_blank"]] === |
|
237 |
+ |
|
238 |
+**Level**: advanced(%%) **Type**: user documentation |
|
239 |
+ |
|
240 |
+We will look into how to bring up a Multiple Run Fitter, load the Experimental Data into the Multiple Run Fitter, specify the function we want to optimize, specify the parameters that will be adjusted, specify the criteria we want the function to satisfy and finally perform the optimization. |
|
241 |
+ |