Changes for page TVB EBRAINS Baltic-Nordic school 2024
Last modified by mhashemi on 2025/03/12 11:20
Summary
-
Page properties (3 modified, 0 added, 0 removed)
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - TVBEBRAINS Baltic-Nordic school 20241 +EBRAINS Baltic-Nordic school 2024 - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. mhashemi1 +XWiki.petkoski - Content
-
... ... @@ -14,48 +14,24 @@ 14 14 ((( 15 15 = What can I find here? = 16 16 17 - Thiscollabcontainsaccesstothe notebooks andreadingmaterials thatwillbeused during theEBRAINSBaltic-Nordicsummer school2024[[https:~~/~~/lsmu.lt/en/events/ebrains/>>https://lsmu.lt/en/events/ebrains/]].17 +* A current topic in system neuroscience literature is the presence of brain activity in the absence of a task condition. These task-negative, spontaneous fluctuations occur in the so-called **rest state**, and a recurring theme of these fluctuations is that they have a network structure. Because TVB uses the structural connectivity of the brain as the backbone for simulating spontaneous activity, resting state activity and its network structure is a prime candidate for modeling in TVB. 18 18 19 - Theobjective is to give to the participants an overview to building whole-brain network models with TVB.We will begin withthe [[First stepsofTVB>>https://lab.ch.ebrains.eu/hub/user-redirect/lab/tree/shared/TVB%20EBRAINS%20Baltic-Nordic%20school%202024/1_TVB_First_steps.ipynb||style="background-color:rgb(255, 255, 255);"]], where we will describe the building blocks of TVB through the paradigm of resting state activity. This will be followed by [[Modelling Epilepsy>>https://lab.ch.ebrains.eu/hub/user-redirect/lab/tree/shared/TVB%20EBRAINS%20Baltic-Nordic%20school%202024/2_TVB_Modelling_Epilepsy.ipynb||style="background-color:rgb(255, 255, 255);"]], where seizure propagation will be modeled. Then, there is one tutorial describing a deeper analysis of [[BOLD monitors>>https://lab.ch.ebrains.eu/hub/user-redirect/lab/tree/shared/TVB%20EBRAINS%20Baltic-Nordic%20school%202024/3_TVB_BOLD_digging_deeper.ipynb||style="background-color: rgb(255, 255, 255);"]]. Finally, a [[Bayesian approach>>https://wiki.ebrains.eu/bin/view/Collabs/ebrains-task-3-3/Drive#notebooks/EITN_tutorial||style="background-color: rgb(255, 255, 255);"]] is used on synthetic data to infer the posterior of the parameters. These can all be found in the drive and accessed through the lab.19 += Who has access? = 20 20 21 - =Requirements=21 +Describe the audience of this collab. 22 22 23 -School participants should have EBRAINS accounts to be able to access and work on the tutorials. 24 24 25 -They are also advised to install TVB locally in case of connection issues. After installation from the following link: https:~/~/www.thevirtualbrain.org/tvb/zwei/brainsimulator-software users can access many more tutorials. 26 - 27 -= Other tutorials = 28 - 29 -In addition to these notebooks, we also refer to the readers to the collab for the Showcase 1 of HBP: "Degeneracy in neuroscience - when is Big Data big enough" 30 - 31 -[[https:~~/~~/wiki.ebrains.eu/bin/view/Collabs/sga3-d1-5-showcase-1/>>url:https://wiki.ebrains.eu/bin/view/Collabs/sga3-d1-5-showcase-1/]] 32 - 33 33 = References = 34 34 35 -((( 36 - 37 - 38 -Sanz-Leon P, Knock SA, Spiegler A, Jirsa VK. [[Mathematical framework for large-scale brain network modeling in The Virtual Brain>>https://www.sciencedirect.com/science/article/pii/S1053811915000051]]. Neuroimage. 2015 May 1;111:385-430. 26 +* ((( 27 +(Palesi et al., 2020): Palesi, F., Lorenzi, R. M., Casellato, C., Ritter, P., Jirsa, V., Wheeler- kingshott, C. A. M. G., and Angelo, E. D. (2020). **The importance of cerebellar connectivity on simulated brain dynamics. **Frontiers in Cellular Neuroscience, 14,1–11. 39 39 ))) 40 - 41 -((( 42 -Schirner M, Domide L, Perdikis D, Triebkorn P, Stefanovski L, Pai R, Prodan P, Valean B, Palmer J, Langford C, Blickensdörfer A. [[Brain simulation as a cloud service: The Virtual Brain on EBRAINS>>https://www.sciencedirect.com/science/article/pii/S1053811922001021]]. NeuroImage. 2022 May 1;251:118973. 43 - 44 -Lavanga M, Stumme J, Yalcinkaya BH, Fousek J, Jockwitz C, Sheheitli H, Bittner N, Hashemi M, Petkoski S, Caspers S, Jirsa V. [[The virtual aging brain: Causal inference supports interhemispheric dedifferentiation in healthy aging>>https://www.sciencedirect.com/science/article/pii/S1053811923005542]]. NeuroImage. 2023 Dec 1;283:120403. 29 +* ((( 30 +(Monteverdi et al., 2022): Monteverdi A, Palesi F, Costa A, Vitali P, Pichiecchio A, Cotta Ramusino M, Bernini S, Jirsa V, Gandini Wheeler-Kingshott CAM and D’Angelo E (2022) **Subject-specific features of excitation/inhibition profiles in neurodegenerative diseases.** Front. Aging Neurosci. 14:868342. doi: 10.3389/fnagi.2022.868342 45 45 ))) 46 - 47 -((( 48 -Wang HE, Triebkorn P, Breyton M, Dollomaja B, Lemarechal JD, Petkoski S, Sorrentino P, Depannemaecker D, Hashemi M, Jirsa VK. [[Virtual brain twins: from basic neuroscience to clinical use>>https://academic.oup.com/nsr/article/11/5/nwae079/7616087]]. National Science Review. 2024 May;11(5):nwae079. 49 - 50 -Baldy N, Woodman M, Jirsa V, Hashemi M. [[Dynamic Causal Modeling in Probabilistic Programming Languages>>https://www.biorxiv.org/content/10.1101/2024.11.06.622230v1.abstract]]. bioRxiv. 2024:2024-11. 51 51 ))) 52 52 53 -((( 54 -Ziaeemehr A, Woodman M, Domide L, Petkoski S, Jirsa V, Hashemi M. [[Virtual Brain Inference (VBI): A flexible and integrative toolkit for efficient probabilistic inference on virtual brain models>>https://www.biorxiv.org/content/10.1101/2025.01.21.633922v1.abstract]] bioRxiv. 2025:2025-01. 55 -))) 56 -))) 57 57 58 - 59 59 (% class="col-xs-12 col-sm-4" %) 60 60 ((( 61 61 {{box title="**Contents**"}}