Attention: The Keycloak upgrade has been completed. As this was a major upgrade, there may be some unexpected issues occurring. Please report any issues you find to support by using the contact form found at https://www.ebrains.eu/contact/. Thank you for your patience and understanding. 


Last modified by petkoski on 2025/09/06 16:12

From version 19.3
edited by petkoski
on 2025/09/05 15:34
Change comment: There is no comment for this version
To version 16.1
edited by mhashemi
on 2025/03/12 11:12
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.petkoski
1 +XWiki.mhashemi
Content
... ... @@ -4,7 +4,7 @@
4 4  (((
5 5  = Building personalized brain network models with TVB =
6 6  
7 -Spase Petkoski and Marmaduke Woodman
7 +Spase Petkoski, Damien Depannemaecker and Pierpaolo Sorrentino
8 8  )))
9 9  )))
10 10  
... ... @@ -16,24 +16,13 @@
16 16  
17 17  This collab contains access to the notebooks and reading materials that will be used during the EBRAINS Baltic-Nordic summer school 2024 [[https:~~/~~/lsmu.lt/en/events/ebrains/>>https://lsmu.lt/en/events/ebrains/]].
18 18  
19 -The objective is to give to the participants an overview to building whole-brain network models with TVB.
19 +The objective is to give to the participants an overview to building whole-brain network models with TVB. We will begin with the [[First steps of TVB>>https://lab.ch.ebrains.eu/hub/user-redirect/lab/tree/shared/TVB%20EBRAINS%20Baltic-Nordic%20school%202024/1_TVB_First_steps.ipynb||style="background-color: rgb(255, 255, 255);"]], where we will describe the building blocks of TVB through the paradigm of resting state activity. This will be followed by [[Modelling Epilepsy>>https://lab.ch.ebrains.eu/hub/user-redirect/lab/tree/shared/TVB%20EBRAINS%20Baltic-Nordic%20school%202024/2_TVB_Modelling_Epilepsy.ipynb||style="background-color: rgb(255, 255, 255);"]], where seizure propagation will be modeled. Then, there is one tutorial describing a deeper analysis of [[BOLD monitors>>https://lab.ch.ebrains.eu/hub/user-redirect/lab/tree/shared/TVB%20EBRAINS%20Baltic-Nordic%20school%202024/3_TVB_BOLD_digging_deeper.ipynb||style="background-color: rgb(255, 255, 255);"]].  Finally, a [[Bayesian approach>>https://wiki.ebrains.eu/bin/view/Collabs/ebrains-task-3-3/Drive#notebooks/EITN_tutorial||style="background-color: rgb(255, 255, 255);"]] is used on synthetic data to infer the posterior of the parameters.  These can all be found in the drive and accessed through the lab.
20 20  
21 -We will begin with the [[First steps of TVB>>https://lab.ch.ebrains.eu/hub/user-redirect/lab/tree/shared/TVB%20EBRAINS%20Baltic-Nordic%20school%202024/1_TVB_First_steps.ipynb||style="background-color: rgb(255, 255, 255);"]], where we will describe the building blocks of TVB through the paradigm of resting state activity.
22 -
23 -This will be followed by [[Modelling Epilepsy>>https://lab.ch.ebrains.eu/hub/user-redirect/lab/tree/shared/TVB%20EBRAINS%20Baltic-Nordic%20school%202024/2_TVB_Modelling_Epilepsy.ipynb||style="background-color: rgb(255, 255, 255);"]], where seizure propagation will be modeled.
24 -
25 -Then, there is one tutorial describing a deeper analysis of [[BOLD monitors>>https://lab.ch.ebrains.eu/hub/user-redirect/lab/tree/shared/TVB%20EBRAINS%20Baltic-Nordic%20school%202024/3_TVB_BOLD_digging_deeper.ipynb||style="background-color: rgb(255, 255, 255);"]].
26 -
27 -Finally, the collab contains one tutorial where a [[Bayesian approach>>https://wiki.ebrains.eu/bin/view/Collabs/ebrains-task-3-3/Drive#notebooks/EITN_tutorial||style="background-color: rgb(255, 255, 255);"]] is used on synthetic data to infer the posterior of the parameters foir a single brain region.
28 -
29 -
30 -These can all be found in the drive and accessed through the lab.
31 -
32 32  = Requirements =
33 33  
34 34  School participants should have EBRAINS accounts to be able to access and work on the tutorials.
35 35  
36 -They are also advised to install TVB locally in case of connection issues. After installation from the following link: https:~/~/www.thevirtualbrain.org/tvb/zwei/brainsimulator-software users can access many more tutorials. For inference, other tools such as Numpyro ([[https:~~/~~/github.com/ins-amu/DCM_ERP_PPLs>>https://github.com/ins-amu/DCM_ERP_PPLs]]) or VBI tool ([[https:~~/~~/github.com/ins-amu/vbi>>https://github.com/ins-amu/vbi]]) will be required.
25 +They are also advised to install TVB locally in case of connection issues. After installation from the following link: https:~/~/www.thevirtualbrain.org/tvb/zwei/brainsimulator-software users can access many more tutorials.
37 37  
38 38  = Other tutorials =
39 39  
... ... @@ -41,28 +41,28 @@
41 41  
42 42  [[https:~~/~~/wiki.ebrains.eu/bin/view/Collabs/sga3-d1-5-showcase-1/>>url:https://wiki.ebrains.eu/bin/view/Collabs/sga3-d1-5-showcase-1/]]
43 43  
44 -[[https:~~/~~/wiki.ebrains.eu/bin/view/Collabs/automatic-dcm/>>https://wiki.ebrains.eu/bin/view/Collabs/automatic-dcm/]]
45 -
46 46  = References =
47 47  
48 48  (((
49 49  
50 50  
51 -* Sanz-Leon P, Knock SA, Spiegler A, Jirsa VK. [[Mathematical framework for large-scale brain network modeling in The Virtual Brain>>https://www.sciencedirect.com/science/article/pii/S1053811915000051]]. Neuroimage. 2015 May 1;111:385-430.
38 +Sanz-Leon P, Knock SA, Spiegler A, Jirsa VK. [[Mathematical framework for large-scale brain network modeling in The Virtual Brain>>https://www.sciencedirect.com/science/article/pii/S1053811915000051]]. Neuroimage. 2015 May 1;111:385-430.
52 52  )))
53 53  
54 54  (((
55 -* Schirner M, Domide L, Perdikis D, Triebkorn P, Stefanovski L, Pai R, Prodan P, Valean B, Palmer J, Langford C, Blickensdörfer A. [[Brain simulation as a cloud service: The Virtual Brain on EBRAINS>>https://www.sciencedirect.com/science/article/pii/S1053811922001021]]. NeuroImage. 2022 May 1;251:118973.
56 -* Lavanga M, Stumme J, Yalcinkaya BH, Fousek J, Jockwitz C, Sheheitli H, Bittner N, Hashemi M, Petkoski S, Caspers S, Jirsa V. [[The virtual aging brain: Causal inference supports interhemispheric dedifferentiation in healthy aging>>https://www.sciencedirect.com/science/article/pii/S1053811923005542]]. NeuroImage. 2023 Dec 1;283:120403.
42 +Schirner M, Domide L, Perdikis D, Triebkorn P, Stefanovski L, Pai R, Prodan P, Valean B, Palmer J, Langford C, Blickensdörfer A. [[Brain simulation as a cloud service: The Virtual Brain on EBRAINS>>https://www.sciencedirect.com/science/article/pii/S1053811922001021]]. NeuroImage. 2022 May 1;251:118973.
43 +
44 +Lavanga M, Stumme J, Yalcinkaya BH, Fousek J, Jockwitz C, Sheheitli H, Bittner N, Hashemi M, Petkoski S, Caspers S, Jirsa V. [[The virtual aging brain: Causal inference supports interhemispheric dedifferentiation in healthy aging>>https://www.sciencedirect.com/science/article/pii/S1053811923005542]]. NeuroImage. 2023 Dec 1;283:120403.
57 57  )))
58 58  
59 59  (((
60 -* Wang HE, Triebkorn P, Breyton M, Dollomaja B, Lemarechal JD, Petkoski S, Sorrentino P, Depannemaecker D, Hashemi M, Jirsa VK. [[Virtual brain twins: from basic neuroscience to clinical use>>https://academic.oup.com/nsr/article/11/5/nwae079/7616087]]. National Science Review. 2024 May;11(5):nwae079.
61 -* Baldy N, Woodman M, Jirsa V, Hashemi M. [[Dynamic Causal Modeling in Probabilistic Programming Languages>>https://www.biorxiv.org/content/10.1101/2024.11.06.622230v1.abstract]]. bioRxiv. 2024:2024-11.
48 +Wang HE, Triebkorn P, Breyton M, Dollomaja B, Lemarechal JD, Petkoski S, Sorrentino P, Depannemaecker D, Hashemi M, Jirsa VK. [[Virtual brain twins: from basic neuroscience to clinical use>>https://academic.oup.com/nsr/article/11/5/nwae079/7616087]]. National Science Review. 2024 May;11(5):nwae079.
49 +
50 +Baldy N, Woodman M, Jirsa V, Hashemi M. [[Dynamic Causal Modeling in Probabilistic Programming Languages>>https://www.biorxiv.org/content/10.1101/2024.11.06.622230v1.abstract]]. bioRxiv. 2024:2024-11.
62 62  )))
63 63  
64 64  (((
65 -* Ziaeemehr A, Woodman M, Domide L, Petkoski S, Jirsa V, Hashemi M. [[Virtual Brain Inference (VBI): A flexible and integrative toolkit for efficient probabilistic inference on virtual brain models>>https://www.biorxiv.org/content/10.1101/2025.01.21.633922v1.abstract]] bioRxiv. 2025:2025-01.
54 +Ziaeemehr A, Woodman M, Domide L, Petkoski S, Jirsa V, Hashemi M. [[Virtual Brain Inference (VBI): A flexible and integrative toolkit for efficient probabilistic inference on virtual brain models>>https://www.biorxiv.org/content/10.1101/2025.01.21.633922v1.abstract]] bioRxiv. 2025:2025-01.
66 66  )))
67 67  )))
68 68