Attention: The Keycloak upgrade has been completed. As this was a major upgrade, there may be some unexpected issues occurring. Please report any issues you find to support by using the contact form found at https://www.ebrains.eu/contact/. Thank you for your patience and understanding. 


Last modified by petkoski on 2025/09/06 16:12

From version 19.4
edited by petkoski
on 2025/09/05 15:35
Change comment: There is no comment for this version
To version 19.5
edited by petkoski
on 2025/09/05 15:41
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -24,8 +24,10 @@
24 24  
25 25  Then, there is one tutorial describing a deeper analysis of [[BOLD monitors>>https://lab.ch.ebrains.eu/hub/user-redirect/lab/tree/shared/TVB%20EBRAINS%20Baltic-Nordic%20school%202024/3_TVB_BOLD_digging_deeper.ipynb||style="background-color: rgb(255, 255, 255);"]].
26 26  
27 -There is also a fourth tutorial which describes application of a fast back-end implementation of the Montbrio-Pazo-Roxin model used for modeling resting state fMRI.
27 +There is also a fourth tutorial which describes application of a fast back-end implementation of the Montbrio-Pazo-Roxin model used for modeling [[resting state fMRI >>https://lab.jsc.ebrains.eu/hub/user-redirect/lab/tree/shared/TVB%20EBRAINS%20Baltic-Nordic%20school%202024/MPR_rs.ipynb]]. This is a based on a previous showcase [[Degeneracy in neuroscience>>https://wiki.ebrains.eu/bin/view/Collabs/sga3-d1-5-showcase-1/]],  which described the interpersonal variability analyzed by the [[Virtual Ageing Brain>>https://www.sciencedirect.com/science/article/pii/S1053811923005542?via%3Dihub]] study.
28 28  
29 +Lavanga, M., Stumme, J., Yalcinkaya, B. H., Fousek, J., Jockwitz, C., Sheheitli, H., Bittner, N., Hashemi, M., Petkoski, S., Caspers, S., & Jirsa, V. (2023). The virtual aging brain: Causal inference supports interhemispheric dedifferentiation in healthy aging. NeuroImage, 283, 120403.
30 +
29 29  Finally, the collab contains one tutorial where a [[Bayesian approach>>https://wiki.ebrains.eu/bin/view/Collabs/ebrains-task-3-3/Drive#notebooks/EITN_tutorial||style="background-color: rgb(255, 255, 255);"]] is used on synthetic data to infer the posterior of the parameters foir a single brain region.
30 30  
31 31