Last modified by mhashemi on 2025/03/12 11:20

From version 7.1
edited by petkoski
on 2024/05/21 10:57
Change comment: There is no comment for this version
To version 13.1
edited by petkoski
on 2024/05/21 11:33
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -14,22 +14,39 @@
14 14  (((
15 15  = What can I find here? =
16 16  
17 -* A current topic in system neuroscience literature is the presence of brain activity in the absence of a task condition. These task-negative, spontaneous fluctuations occur in the so-called **rest state**, and a recurring theme of these fluctuations is that they have a network structure. Because TVB uses the structural connectivity of the brain as the backbone for simulating spontaneous activity, resting state activity and its network structure is a prime candidate for modeling in TVB.
17 +This collab contains access to the notebooks and reading materials that will be used during the EBRAINS Baltic-Nordic summer school 2024 [[https:~~/~~/lsmu.lt/en/events/ebrains/>>https://lsmu.lt/en/events/ebrains/]].
18 18  
19 -= Who has access? =
19 +The objective is to give to the participants an overview to building whole-brain network models with TVB. We will begin with the [[First steps of TVB>>url:https://lab.ch.ebrains.eu/hub/user-redirect/lab/tree/shared/TVB%20tutorial%3A%20first%20steps/tvb_tutorials/1_TVB_First_steps.ipynb||style="background-color: rgb(255, 255, 255);"]], where we will describe the building blocks of TVB through the paradigm of resting state activity. This will be followed by [[Modelling Epilepsy>>url:https://lab.ch.ebrains.eu/hub/user-redirect/lab/tree/shared/TVB%20tutorial%3A%20first%20steps/tvb_tutorials/2_TVB_Modelling_Epilepsy.ipynb||style="background-color: rgb(255, 255, 255);"]], where seizure propagation will be modeled. Finally, there is one tutorial describing deeper analysis of [[BOLD monitors>>url:https://lab.ch.ebrains.eu/hub/user-redirect/lab/tree/shared/TVB%20tutorial%3A%20first%20steps/tvb_tutorials/3_TVB_BOLD_digging_deeper.ipynb||style="background-color: rgb(255, 255, 255);"]]. These can all be found in the following EBRAINS lab:
20 20  
21 -Describe the audience of this collab.
21 +[[https:~~/~~/lab.ch.ebrains.eu/hub/user-redirect/lab/tree/shared/TVB%20tutorial%3A%20first%20steps/tvb_tutorials>>url:https://lab.ch.ebrains.eu/hub/user-redirect/lab/tree/shared/TVB%20tutorial%3A%20first%20steps/tvb_tutorials]]
22 22  
23 += Requirements =
23 23  
25 +School participants should have EBRAINS accounts to be able to access and work on the tutorials.
26 +
27 +They are also advised to install TVB locally in case of connection issues. After installation from the following link: https:~/~/www.thevirtualbrain.org/tvb/zwei/brainsimulator-software users can access many more tutorials.
28 +
29 += Other tutorials =
30 +
31 +In addition to these notebooks, we also refer to the readers to the collab for the Showcase 1 of HBP: "Degeneracy in neuroscience - when is Big Data big enough"
32 +
33 +[[https:~~/~~/wiki.ebrains.eu/bin/view/Collabs/sga3-d1-5-showcase-1/>>url:https://wiki.ebrains.eu/bin/view/Collabs/sga3-d1-5-showcase-1/]]
34 +
24 24  = References =
25 25  
26 26  * (((
27 -(Palesi et al., 2020): Palesi, F., Lorenzi, R. M., Casellato, C., Ritter, P., Jirsa, V., Wheeler- kingshott, C. A. M. G., and Angelo, E. D. (2020). **The importance of cerebellar connectivity on simulated brain dynamics. **Frontiers in Cellular Neuroscience, 14,111.
38 +Sanz-Leon P, Knock SA, Spiegler A, Jirsa VK. [[Mathematical framework for large-scale brain network modeling in The Virtual Brain>>https://www.sciencedirect.com/science/article/pii/S1053811915000051]]. Neuroimage. 2015 May 1;111:385-430.
28 28  )))
29 29  * (((
30 -(Monteverdi et al., 2022): Monteverdi A, Palesi F, Costa A, Vitali P, Pichiecchio A, Cotta Ramusino M, Bernini S, Jirsa V, Gandini Wheeler-Kingshott CAM and D’Angelo E (2022) **Subject-specific features of excitation/inhibition profiles in neurodegenerative diseases.** Front. Aging Neurosci. 14:868342. doi: 10.3389/fnagi.2022.868342
41 +Schirner M, Domide L, Perdikis D, Triebkorn P, Stefanovski L, Pai R, Prodan P, Valean B, Palmer J, Langford C, Blickensdörfer A. [[Brain simulation as a cloud service: The Virtual Brain on EBRAINS>>https://www.sciencedirect.com/science/article/pii/S1053811922001021]]. NeuroImage. 2022 May 1;251:118973.
31 31  )))
43 +* (((
44 +Lavanga M, Stumme J, Yalcinkaya BH, Fousek J, Jockwitz C, Sheheitli H, Bittner N, Hashemi M, Petkoski S, Caspers S, Jirsa V. [[The virtual aging brain: Causal inference supports interhemispheric dedifferentiation in healthy aging>>https://www.sciencedirect.com/science/article/pii/S1053811923005542]]. NeuroImage. 2023 Dec 1;283:120403.
32 32  )))
46 +* (((
47 +Wang HE, Triebkorn P, Breyton M, Dollomaja B, Lemarechal JD, Petkoski S, Sorrentino P, Depannemaecker D, Hashemi M, Jirsa VK. [[Virtual brain twins: from basic neuroscience to clinical use>>https://academic.oup.com/nsr/article/11/5/nwae079/7616087]]. National Science Review. 2024 May;11(5):nwae079.
48 +)))
49 +)))
33 33  
34 34  
35 35  (% class="col-xs-12 col-sm-4" %)