Wiki source code of TVB EBRAINS Baltic-Nordic school 2024
Hide last authors
author | version | line-number | content |
---|---|---|---|
![]() |
1.1 | 1 | (% class="jumbotron" %) |
2 | ((( | ||
3 | (% class="container" %) | ||
4 | ((( | ||
![]() |
7.1 | 5 | = Building personalized brain network models with TVB = |
![]() |
1.1 | 6 | |
![]() |
16.2 | 7 | Spase Petkoski, Damien Depannemaecker, Meysam Hashemi, and Pierpaolo Sorrentino |
![]() |
1.1 | 8 | ))) |
9 | ))) | ||
10 | |||
11 | (% class="row" %) | ||
12 | ((( | ||
13 | (% class="col-xs-12 col-sm-8" %) | ||
14 | ((( | ||
15 | = What can I find here? = | ||
16 | |||
![]() |
11.1 | 17 | This collab contains access to the notebooks and reading materials that will be used during the EBRAINS Baltic-Nordic summer school 2024 [[https:~~/~~/lsmu.lt/en/events/ebrains/>>https://lsmu.lt/en/events/ebrains/]]. |
![]() |
1.1 | 18 | |
![]() |
17.2 | 19 | The objective is to give to the participants an overview to building whole-brain network models with TVB. We will begin with the [[First steps of TVB>>https://lab.ch.ebrains.eu/hub/user-redirect/lab/tree/shared/TVB%20EBRAINS%20Baltic-Nordic%20school%202024/1_TVB_First_steps.ipynb||style="background-color: rgb(255, 255, 255);"]], where we will describe the building blocks of TVB through the paradigm of resting state activity. This will be followed by [[Modelling Epilepsy>>https://lab.ch.ebrains.eu/hub/user-redirect/lab/tree/shared/TVB%20EBRAINS%20Baltic-Nordic%20school%202024/2_TVB_Modelling_Epilepsy.ipynb||style="background-color: rgb(255, 255, 255);"]], where seizure propagation will be modeled. Then, there is one tutorial describing a deeper analysis of [[BOLD monitors>>https://lab.ch.ebrains.eu/hub/user-redirect/lab/tree/shared/TVB%20EBRAINS%20Baltic-Nordic%20school%202024/3_TVB_BOLD_digging_deeper.ipynb||style="background-color: rgb(255, 255, 255);"]]. Finally, a [[Bayesian approach>>https://wiki.ebrains.eu/bin/view/Collabs/ebrains-task-3-3/Drive#notebooks/EITN_tutorial||style="background-color: rgb(255, 255, 255);"]] is used on synthetic data to infer the posterior of the parameters. These can all be found in the drive and accessed through the lab. |
![]() |
11.1 | 20 | |
![]() |
12.1 | 21 | = Requirements = |
22 | |||
![]() |
13.1 | 23 | School participants should have EBRAINS accounts to be able to access and work on the tutorials. |
![]() |
12.1 | 24 | |
![]() |
13.1 | 25 | They are also advised to install TVB locally in case of connection issues. After installation from the following link: https:~/~/www.thevirtualbrain.org/tvb/zwei/brainsimulator-software users can access many more tutorials. |
![]() |
12.1 | 26 | |
![]() |
10.1 | 27 | = Other tutorials = |
![]() |
1.1 | 28 | |
![]() |
13.1 | 29 | In addition to these notebooks, we also refer to the readers to the collab for the Showcase 1 of HBP: "Degeneracy in neuroscience - when is Big Data big enough" |
![]() |
7.1 | 30 | |
![]() |
10.1 | 31 | [[https:~~/~~/wiki.ebrains.eu/bin/view/Collabs/sga3-d1-5-showcase-1/>>url:https://wiki.ebrains.eu/bin/view/Collabs/sga3-d1-5-showcase-1/]] |
![]() |
7.1 | 32 | |
![]() |
16.2 | 33 | [[https:~~/~~/wiki.ebrains.eu/bin/view/Collabs/automatic-dcm/>>https://wiki.ebrains.eu/bin/view/Collabs/automatic-dcm/]] |
34 | |||
![]() |
7.1 | 35 | = References = |
36 | |||
![]() |
15.2 | 37 | ((( |
38 | |||
39 | |||
![]() |
16.2 | 40 | * Sanz-Leon P, Knock SA, Spiegler A, Jirsa VK. [[Mathematical framework for large-scale brain network modeling in The Virtual Brain>>https://www.sciencedirect.com/science/article/pii/S1053811915000051]]. Neuroimage. 2015 May 1;111:385-430. |
![]() |
1.1 | 41 | ))) |
![]() |
15.2 | 42 | |
43 | ((( | ||
![]() |
16.2 | 44 | * Schirner M, Domide L, Perdikis D, Triebkorn P, Stefanovski L, Pai R, Prodan P, Valean B, Palmer J, Langford C, Blickensdörfer A. [[Brain simulation as a cloud service: The Virtual Brain on EBRAINS>>https://www.sciencedirect.com/science/article/pii/S1053811922001021]]. NeuroImage. 2022 May 1;251:118973. |
45 | * Lavanga M, Stumme J, Yalcinkaya BH, Fousek J, Jockwitz C, Sheheitli H, Bittner N, Hashemi M, Petkoski S, Caspers S, Jirsa V. [[The virtual aging brain: Causal inference supports interhemispheric dedifferentiation in healthy aging>>https://www.sciencedirect.com/science/article/pii/S1053811923005542]]. NeuroImage. 2023 Dec 1;283:120403. | ||
![]() |
7.1 | 46 | ))) |
![]() |
15.2 | 47 | |
48 | ((( | ||
![]() |
16.2 | 49 | * Wang HE, Triebkorn P, Breyton M, Dollomaja B, Lemarechal JD, Petkoski S, Sorrentino P, Depannemaecker D, Hashemi M, Jirsa VK. [[Virtual brain twins: from basic neuroscience to clinical use>>https://academic.oup.com/nsr/article/11/5/nwae079/7616087]]. National Science Review. 2024 May;11(5):nwae079. |
50 | * Baldy N, Woodman M, Jirsa V, Hashemi M. [[Dynamic Causal Modeling in Probabilistic Programming Languages>>https://www.biorxiv.org/content/10.1101/2024.11.06.622230v1.abstract]]. bioRxiv. 2024:2024-11. | ||
![]() |
9.1 | 51 | ))) |
![]() |
15.2 | 52 | |
53 | ((( | ||
![]() |
16.2 | 54 | * Ziaeemehr A, Woodman M, Domide L, Petkoski S, Jirsa V, Hashemi M. [[Virtual Brain Inference (VBI): A flexible and integrative toolkit for efficient probabilistic inference on virtual brain models>>https://www.biorxiv.org/content/10.1101/2025.01.21.633922v1.abstract]] bioRxiv. 2025:2025-01. |
![]() |
9.1 | 55 | ))) |
![]() |
15.2 | 56 | ))) |
![]() |
1.1 | 57 | |
58 | |||
59 | (% class="col-xs-12 col-sm-4" %) | ||
60 | ((( | ||
61 | {{box title="**Contents**"}} | ||
62 | {{toc/}} | ||
63 | {{/box}} | ||
64 | |||
65 | |||
66 | ))) | ||
67 | ))) |