Wiki source code of TVB EBRAINS Baltic-Nordic school 2024
Hide last authors
author | version | line-number | content |
---|---|---|---|
![]() |
1.1 | 1 | (% class="jumbotron" %) |
2 | ((( | ||
3 | (% class="container" %) | ||
4 | ((( | ||
![]() |
7.1 | 5 | = Building personalized brain network models with TVB = |
![]() |
1.1 | 6 | |
![]() |
19.2 | 7 | Spase Petkoski and Marmaduke Woodman |
![]() |
1.1 | 8 | ))) |
9 | ))) | ||
10 | |||
11 | (% class="row" %) | ||
12 | ((( | ||
13 | (% class="col-xs-12 col-sm-8" %) | ||
14 | ((( | ||
15 | = What can I find here? = | ||
16 | |||
![]() |
11.1 | 17 | This collab contains access to the notebooks and reading materials that will be used during the EBRAINS Baltic-Nordic summer school 2024 [[https:~~/~~/lsmu.lt/en/events/ebrains/>>https://lsmu.lt/en/events/ebrains/]]. |
![]() |
1.1 | 18 | |
![]() |
19.3 | 19 | The objective is to give to the participants an overview to building whole-brain network models with TVB. |
![]() |
11.1 | 20 | |
![]() |
19.3 | 21 | We will begin with the [[First steps of TVB>>https://lab.ch.ebrains.eu/hub/user-redirect/lab/tree/shared/TVB%20EBRAINS%20Baltic-Nordic%20school%202024/1_TVB_First_steps.ipynb||style="background-color: rgb(255, 255, 255);"]], where we will describe the building blocks of TVB through the paradigm of resting state activity. |
22 | |||
23 | This will be followed by [[Modelling Epilepsy>>https://lab.ch.ebrains.eu/hub/user-redirect/lab/tree/shared/TVB%20EBRAINS%20Baltic-Nordic%20school%202024/2_TVB_Modelling_Epilepsy.ipynb||style="background-color: rgb(255, 255, 255);"]], where seizure propagation will be modeled. | ||
24 | |||
25 | Then, there is one tutorial describing a deeper analysis of [[BOLD monitors>>https://lab.ch.ebrains.eu/hub/user-redirect/lab/tree/shared/TVB%20EBRAINS%20Baltic-Nordic%20school%202024/3_TVB_BOLD_digging_deeper.ipynb||style="background-color: rgb(255, 255, 255);"]]. | ||
26 | |||
27 | Finally, the collab contains one tutorial where a [[Bayesian approach>>https://wiki.ebrains.eu/bin/view/Collabs/ebrains-task-3-3/Drive#notebooks/EITN_tutorial||style="background-color: rgb(255, 255, 255);"]] is used on synthetic data to infer the posterior of the parameters foir a single brain region. | ||
28 | |||
29 | |||
30 | These can all be found in the drive and accessed through the lab. | ||
31 | |||
![]() |
12.1 | 32 | = Requirements = |
33 | |||
![]() |
13.1 | 34 | School participants should have EBRAINS accounts to be able to access and work on the tutorials. |
![]() |
12.1 | 35 | |
![]() |
18.2 | 36 | They are also advised to install TVB locally in case of connection issues. After installation from the following link: https:~/~/www.thevirtualbrain.org/tvb/zwei/brainsimulator-software users can access many more tutorials. For inference, other tools such as Numpyro ([[https:~~/~~/github.com/ins-amu/DCM_ERP_PPLs>>https://github.com/ins-amu/DCM_ERP_PPLs]]) or VBI tool ([[https:~~/~~/github.com/ins-amu/vbi>>https://github.com/ins-amu/vbi]]) will be required. |
![]() |
12.1 | 37 | |
![]() |
10.1 | 38 | = Other tutorials = |
![]() |
1.1 | 39 | |
![]() |
13.1 | 40 | In addition to these notebooks, we also refer to the readers to the collab for the Showcase 1 of HBP: "Degeneracy in neuroscience - when is Big Data big enough" |
![]() |
7.1 | 41 | |
![]() |
10.1 | 42 | [[https:~~/~~/wiki.ebrains.eu/bin/view/Collabs/sga3-d1-5-showcase-1/>>url:https://wiki.ebrains.eu/bin/view/Collabs/sga3-d1-5-showcase-1/]] |
![]() |
7.1 | 43 | |
![]() |
16.2 | 44 | [[https:~~/~~/wiki.ebrains.eu/bin/view/Collabs/automatic-dcm/>>https://wiki.ebrains.eu/bin/view/Collabs/automatic-dcm/]] |
45 | |||
![]() |
7.1 | 46 | = References = |
47 | |||
![]() |
15.2 | 48 | ((( |
49 | |||
50 | |||
![]() |
16.2 | 51 | * Sanz-Leon P, Knock SA, Spiegler A, Jirsa VK. [[Mathematical framework for large-scale brain network modeling in The Virtual Brain>>https://www.sciencedirect.com/science/article/pii/S1053811915000051]]. Neuroimage. 2015 May 1;111:385-430. |
![]() |
1.1 | 52 | ))) |
![]() |
15.2 | 53 | |
54 | ((( | ||
![]() |
16.2 | 55 | * Schirner M, Domide L, Perdikis D, Triebkorn P, Stefanovski L, Pai R, Prodan P, Valean B, Palmer J, Langford C, Blickensdörfer A. [[Brain simulation as a cloud service: The Virtual Brain on EBRAINS>>https://www.sciencedirect.com/science/article/pii/S1053811922001021]]. NeuroImage. 2022 May 1;251:118973. |
56 | * Lavanga M, Stumme J, Yalcinkaya BH, Fousek J, Jockwitz C, Sheheitli H, Bittner N, Hashemi M, Petkoski S, Caspers S, Jirsa V. [[The virtual aging brain: Causal inference supports interhemispheric dedifferentiation in healthy aging>>https://www.sciencedirect.com/science/article/pii/S1053811923005542]]. NeuroImage. 2023 Dec 1;283:120403. | ||
![]() |
7.1 | 57 | ))) |
![]() |
15.2 | 58 | |
59 | ((( | ||
![]() |
16.2 | 60 | * Wang HE, Triebkorn P, Breyton M, Dollomaja B, Lemarechal JD, Petkoski S, Sorrentino P, Depannemaecker D, Hashemi M, Jirsa VK. [[Virtual brain twins: from basic neuroscience to clinical use>>https://academic.oup.com/nsr/article/11/5/nwae079/7616087]]. National Science Review. 2024 May;11(5):nwae079. |
61 | * Baldy N, Woodman M, Jirsa V, Hashemi M. [[Dynamic Causal Modeling in Probabilistic Programming Languages>>https://www.biorxiv.org/content/10.1101/2024.11.06.622230v1.abstract]]. bioRxiv. 2024:2024-11. | ||
![]() |
9.1 | 62 | ))) |
![]() |
15.2 | 63 | |
64 | ((( | ||
![]() |
16.2 | 65 | * Ziaeemehr A, Woodman M, Domide L, Petkoski S, Jirsa V, Hashemi M. [[Virtual Brain Inference (VBI): A flexible and integrative toolkit for efficient probabilistic inference on virtual brain models>>https://www.biorxiv.org/content/10.1101/2025.01.21.633922v1.abstract]] bioRxiv. 2025:2025-01. |
![]() |
9.1 | 66 | ))) |
![]() |
15.2 | 67 | ))) |
![]() |
1.1 | 68 | |
69 | |||
70 | (% class="col-xs-12 col-sm-4" %) | ||
71 | ((( | ||
72 | {{box title="**Contents**"}} | ||
73 | {{toc/}} | ||
74 | {{/box}} | ||
75 | |||
76 | |||
77 | ))) | ||
78 | ))) |