Warning:  Due to planned infrastructure maintenance, the EBRAINS Wiki and EBRAINS Support system will be unavailable for up to three days starting Monday, 14 July. During this period, both services will be inaccessible, and any emails sent to the support address will not be received.

Attention: We are currently experiencing some issues with the EBRAINS Drive. Please bear with us as we fix this issue. We apologise for any inconvenience caused.


Version 7.1 by petkoski on 2024/05/21 10:57

Hide last authors
petkoski 1.1 1 (% class="jumbotron" %)
2 (((
3 (% class="container" %)
4 (((
petkoski 7.1 5 = Building personalized brain network models with TVB =
petkoski 1.1 6
petkoski 7.1 7 Spase Petkoski, Damien Depannemaecker and Pierpaolo Sorrentino
petkoski 1.1 8 )))
9 )))
10
11 (% class="row" %)
12 (((
13 (% class="col-xs-12 col-sm-8" %)
14 (((
15 = What can I find here? =
16
petkoski 7.1 17 * A current topic in system neuroscience literature is the presence of brain activity in the absence of a task condition. These task-negative, spontaneous fluctuations occur in the so-called **rest state**, and a recurring theme of these fluctuations is that they have a network structure. Because TVB uses the structural connectivity of the brain as the backbone for simulating spontaneous activity, resting state activity and its network structure is a prime candidate for modeling in TVB.
petkoski 1.1 18
19 = Who has access? =
20
21 Describe the audience of this collab.
petkoski 7.1 22
23
24 = References =
25
26 * (((
27 (Palesi et al., 2020): Palesi, F., Lorenzi, R. M., Casellato, C., Ritter, P., Jirsa, V., Wheeler- kingshott, C. A. M. G., and Angelo, E. D. (2020). **The importance of cerebellar connectivity on simulated brain dynamics. **Frontiers in Cellular Neuroscience, 14,1–11.
petkoski 1.1 28 )))
petkoski 7.1 29 * (((
30 (Monteverdi et al., 2022): Monteverdi A, Palesi F, Costa A, Vitali P, Pichiecchio A, Cotta Ramusino M, Bernini S, Jirsa V, Gandini Wheeler-Kingshott CAM and D’Angelo E (2022) **Subject-specific features of excitation/inhibition profiles in neurodegenerative diseases.** Front. Aging Neurosci. 14:868342. doi: 10.3389/fnagi.2022.868342
31 )))
32 )))
petkoski 1.1 33
34
35 (% class="col-xs-12 col-sm-4" %)
36 (((
37 {{box title="**Contents**"}}
38 {{toc/}}
39 {{/box}}
40
41
42 )))
43 )))