Attention: The EBRAINS drive will be unavailable for most of the weekend starting the 25th October. Although the Lab is availble while the Drive is down, files that are stored in the Drive will not be loaded and you will be unable to save documents directly on the Lab.


Last modified by emrebasp on 2024/05/31 14:36

From version 10.2
edited by emrebasp
on 2024/05/27 14:42
Change comment: There is no comment for this version
To version 11.1
edited by emrebasp
on 2024/05/27 14:54
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -27,26 +27,26 @@
27 27  = References =
28 28  
29 29  * (((
30 -Sanz-Leon P., Knock S. A., Spiegler A., Jirsa V. K. (2015) [[Mathematical framework for large-scale brain network modeling in The Virtual Brain>>url:https://www.sciencedirect.com/science/article/pii/S1053811915000051]]. Neuroimage. 2015 May 1; 111:385-430.
30 +Sanz-Leon P., Knock S. A., Spiegler A., Jirsa V. K. (2015). [[Mathematical framework for large-scale brain network modeling in The Virtual Brain>>url:https://www.sciencedirect.com/science/article/pii/S1053811915000051]]. NeuroImage, 111, 385-430.
31 31  )))
32 32  * (((
33 -Schirner M, Domide L, Perdikis D, Triebkorn P, Stefanovski L, Pai R, Prodan P, Valean B, Palmer J, Langford C, Blickensdörfer A. [[Brain simulation as a cloud service: The Virtual Brain on EBRAINS>>url:https://www.sciencedirect.com/science/article/pii/S1053811922001021]]. NeuroImage. 2022 May 1;251:118973.
33 +Schirner M., Domide L., Perdikis D., Triebkorn P., Stefanovski L., Pai R., Prodan P., Valean B., Palmer J., Langford C., Blickensdörfer A. (2022). [[Brain simulation as a cloud service: The Virtual Brain on EBRAINS>>url:https://www.sciencedirect.com/science/article/pii/S1053811922001021]]. NeuroImage, 251, 118973.
34 34  )))
35 35  * (((
36 -Lavanga M, Stumme J, Yalcinkaya BH, Fousek J, Jockwitz C, Sheheitli H, Bittner N, Hashemi M, Petkoski S, Caspers S, Jirsa V. [[The virtual aging brain: Causal inference supports interhemispheric dedifferentiation in healthy aging>>url:https://www.sciencedirect.com/science/article/pii/S1053811923005542]]. NeuroImage. 2023 Dec 1;283:120403.
36 +Lavanga M., Stumme J., Yalcinkaya B. H., Fousek J., Jockwitz C., Sheheitli H., Bittner N., Hashemi M., Petkoski S., Caspers S., Jirsa V. (2023). [[The virtual aging brain: Causal inference supports interhemispheric dedifferentiation in healthy aging>>url:https://www.sciencedirect.com/science/article/pii/S1053811923005542]]. NeuroImage, 283, 120403.
37 37  )))
38 38  * (((
39 -Wang HE, Triebkorn P, Breyton M, Dollomaja B, Lemarechal JD, Petkoski S, Sorrentino P, Depannemaecker D, Hashemi M, Jirsa VK. [[Virtual brain twins: from basic neuroscience to clinical use>>url:https://academic.oup.com/nsr/article/11/5/nwae079/7616087]]. National Science Review. 2024 May;11(5):nwae079.
39 +Wang H. E., Triebkorn P., Breyton M., Dollomaja B., Lemarechal J. D., Petkoski S., Sorrentino P., Depannemaecker D., Hashemi M., Jirsa V. K. (2024). [[Virtual brain twins: from basic neuroscience to clinical use>>url:https://academic.oup.com/nsr/article/11/5/nwae079/7616087]]. National Science Review, 11(5), nwae079.
40 40  )))
41 41  * (((
42 -Baspinar, E., Cecchini, G., DePass, M., Andujar, M., Pani, P., Ferraina, S., Moreno-Bote, R., Cos, I., Destexhe, A. (2023). A biologically plausible decision-making model based on interacting cortical columns. bioRxiv, 2023-02.
42 +Baspinar, E., Cecchini, G., DePass, M., Andujar, M., Pani, P., Ferraina, S., Moreno-Bote, R., Cos, I., Destexhe, A. (2023). [[A biologically plausible decision-making model based on interacting cortical columns>>https://www.biorxiv.org/content/10.1101/2023.02.28.530384v2]]. bioRxiv, 2023-02.
43 43  
44 -[3]: Di Volo, M., Romagnoni, A., Capone, C., Destexhe, A. (2019). Biologically realistic mean-field models of conductance-based networks of spiking neurons with adaptation. Neural Computation, 31(4), 653-680.
44 +[3]: Di Volo, M., Romagnoni, A., Capone, C., Destexhe, A. (2019). [[Biologically realistic mean-field models of conductance-based networks of spiking neurons with adaptation>>https://direct.mit.edu/neco/article-abstract/31/4/653/8461/Biologically-Realistic-Mean-Field-Models-of?redirectedFrom=fulltext]]. Neural Computation, 31(4), 653-680.
45 45  
46 -[1]: Goldman, J. S., Kusch, L., Aquilue, D., Yalçınkaya, B. H., Depannemaecker, D., Ancourt, K., Nghiem, T. E., Jirsa, V., Destexhe, A. (2023). A comprehensive neural simulation of slow-wave sleep and highly responsive wakefulness dynamics. Frontiers in Computational Neuroscience, 16, 1058957.
46 +[1]: Goldman, J. S., Kusch, L., Aquilue, D., Yalçınkaya, B. H., Depannemaecker, D., Ancourt, K., Nghiem, T. E., Jirsa, V., Destexhe, A. (2023). [[A comprehensive neural simulation of slow-wave sleep and highly responsive wakefulness dynamics>>https://www.frontiersin.org/articles/10.3389/fncom.2022.1058957/full]]. Frontiers in Computational Neuroscience, 16, 1058957.
47 47  )))
48 48  * (((
49 -[2]: Sacha, M., Goldman, J. S., Kusch, L., Destexhe, A. (2024). Asynchronous and slow-wave oscillatory states in connectome-based models of mouse, monkey and human cerebral cortex. Applied Sciences, 14(3), 1063.
49 +[2]: Sacha, M., Goldman, J. S., Kusch, L., Destexhe, A. (2024). [[Asynchronous and slow-wave oscillatory states in connectome-based models of mouse, monkey and human cerebral cortex>>https://www.mdpi.com/2076-3417/14/3/1063]]. Applied Sciences, 14(3), 1063.
50 50  )))
51 51  )))
52 52