Changes for page EBRAINS Bilbao TVB Hands-on
Last modified by emrebasp on 2024/05/31 14:36
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -27,26 +27,26 @@ 27 27 = References = 28 28 29 29 * ((( 30 -Sanz-Leon P., Knock S. A., Spiegler A., Jirsa V. K. (2015) .[[Mathematical framework for large-scale brain network modeling in The Virtual Brain>>url:https://www.sciencedirect.com/science/article/pii/S1053811915000051]]. NeuroImage,111,385-430.30 +Sanz-Leon P., Knock S. A., Spiegler A., Jirsa V. K. (2015) [[Mathematical framework for large-scale brain network modeling in The Virtual Brain>>url:https://www.sciencedirect.com/science/article/pii/S1053811915000051]]. Neuroimage. 2015 May 1; 111:385-430. 31 31 ))) 32 32 * ((( 33 -Schirner M ., Domide L., Perdikis D., Triebkorn P., Stefanovski L., Pai R., Prodan P., Valean B., Palmer J., Langford C., Blickensdörfer A.(2022).[[Brain simulation as a cloud service: The Virtual Brain on EBRAINS>>url:https://www.sciencedirect.com/science/article/pii/S1053811922001021]]. NeuroImage,251,118973.33 +Schirner M, Domide L, Perdikis D, Triebkorn P, Stefanovski L, Pai R, Prodan P, Valean B, Palmer J, Langford C, Blickensdörfer A. [[Brain simulation as a cloud service: The Virtual Brain on EBRAINS>>url:https://www.sciencedirect.com/science/article/pii/S1053811922001021]]. NeuroImage. 2022 May 1;251:118973. 34 34 ))) 35 35 * ((( 36 -Lavanga M ., Stumme J., Yalcinkaya B.H., Fousek J., Jockwitz C., Sheheitli H., Bittner N., Hashemi M., Petkoski S., Caspers S., Jirsa V.(2023).[[The virtual aging brain: Causal inference supports interhemispheric dedifferentiation in healthy aging>>url:https://www.sciencedirect.com/science/article/pii/S1053811923005542]]. NeuroImage,283,120403.36 +Lavanga M, Stumme J, Yalcinkaya BH, Fousek J, Jockwitz C, Sheheitli H, Bittner N, Hashemi M, Petkoski S, Caspers S, Jirsa V. [[The virtual aging brain: Causal inference supports interhemispheric dedifferentiation in healthy aging>>url:https://www.sciencedirect.com/science/article/pii/S1053811923005542]]. NeuroImage. 2023 Dec 1;283:120403. 37 37 ))) 38 38 * ((( 39 -Wang H .E., Triebkorn P., Breyton M., Dollomaja B., Lemarechal J.D., Petkoski S., Sorrentino P., Depannemaecker D., Hashemi M., Jirsa V.K.(2024).[[Virtual brain twins: from basic neuroscience to clinical use>>url:https://academic.oup.com/nsr/article/11/5/nwae079/7616087]]. National Science Review,11(5),nwae079.39 +Wang HE, Triebkorn P, Breyton M, Dollomaja B, Lemarechal JD, Petkoski S, Sorrentino P, Depannemaecker D, Hashemi M, Jirsa VK. [[Virtual brain twins: from basic neuroscience to clinical use>>url:https://academic.oup.com/nsr/article/11/5/nwae079/7616087]]. National Science Review. 2024 May;11(5):nwae079. 40 40 ))) 41 41 * ((( 42 -Baspinar, E., Cecchini, G., DePass, M., Andujar, M., Pani, P., Ferraina, S., Moreno-Bote, R., Cos, I., Destexhe, A. (2023). [[A biologically plausible decision-making model based on interacting cortical columns>>https://www.biorxiv.org/content/10.1101/2023.02.28.530384v2]]. bioRxiv, 2023-02.42 +Baspinar, E., Cecchini, G., DePass, M., Andujar, M., Pani, P., Ferraina, S., Moreno-Bote, R., Cos, I., Destexhe, A. (2023). A biologically plausible decision-making model based on interacting cortical columns. bioRxiv, 2023-02. 43 43 44 -[3]: Di Volo, M., Romagnoni, A., Capone, C., Destexhe, A. (2019). [[Biologically realistic mean-field models of conductance-based networks of spiking neurons with adaptation>>https://direct.mit.edu/neco/article-abstract/31/4/653/8461/Biologically-Realistic-Mean-Field-Models-of?redirectedFrom=fulltext]].Neural Computation, 31(4), 653-680.44 +[3]: Di Volo, M., Romagnoni, A., Capone, C., Destexhe, A. (2019). Biologically realistic mean-field models of conductance-based networks of spiking neurons with adaptation. Neural Computation, 31(4), 653-680. 45 45 46 -[1]: Goldman, J. S., Kusch, L., Aquilue, D., Yalçınkaya, B. H., Depannemaecker, D., Ancourt, K., Nghiem, T. E., Jirsa, V., Destexhe, A. (2023). [[A comprehensive neural simulation of slow-wave sleep and highly responsive wakefulness dynamics>>https://www.frontiersin.org/articles/10.3389/fncom.2022.1058957/full]].Frontiers in Computational Neuroscience, 16, 1058957.46 +[1]: Goldman, J. S., Kusch, L., Aquilue, D., Yalçınkaya, B. H., Depannemaecker, D., Ancourt, K., Nghiem, T. E., Jirsa, V., Destexhe, A. (2023). A comprehensive neural simulation of slow-wave sleep and highly responsive wakefulness dynamics. Frontiers in Computational Neuroscience, 16, 1058957. 47 47 ))) 48 48 * ((( 49 -[2]: Sacha, M., Goldman, J. S., Kusch, L., Destexhe, A. (2024). [[Asynchronous and slow-wave oscillatory states in connectome-based models of mouse, monkey and human cerebral cortex>>https://www.mdpi.com/2076-3417/14/3/1063]].Applied Sciences, 14(3), 1063.49 +[2]: Sacha, M., Goldman, J. S., Kusch, L., Destexhe, A. (2024). Asynchronous and slow-wave oscillatory states in connectome-based models of mouse, monkey and human cerebral cortex. Applied Sciences, 14(3), 1063. 50 50 ))) 51 51 ))) 52 52