Changes for page Elephant Tutorials

Last modified by denker on 2025/04/09 07:02

From version 29.1
edited by denker
on 2022/03/22 18:06
Change comment: Migrated property [owner] from class [Collaboratory.Apps.Collab.Code.CollabClass]
To version 57.1
edited by denker
on 2025/04/09 07:00
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -2,12 +2,12 @@
2 2  (((
3 3  (% class="container" %)
4 4  (((
5 -= (% style="color:#f39c12" %)Elephant Tutorial Space[[image:https://elephant.readthedocs.io/en/latest/_static/elephant_logo_sidebar.png||alt="Elephant logo" style="float:right"]](%%) =
5 += (% style="color:#f39c12" %)Elephant Tutorial Space[[image:https://elephant.readthedocs.io/en/latest/_static/elephant_logo_sidebar.png||alt="Elephant logo" data-xwiki-image-style-alignment="end"]](%%) =
6 6  
7 7  (% style="color:#4e5f70" %)Interactive video tutorials on
8 8  neuronal data analysis using Elephant
9 9  
10 -(% style="color:#e74c3c" %)**~-~- in beta  ~-~-**
10 +
11 11  )))
12 12  )))
13 13  
... ... @@ -15,6 +15,12 @@
15 15  (((
16 16  (% class="col-xs-12 col-sm-8" %)
17 17  (((
18 +== Upcoming training events ==
19 +
20 +{{info}}
21 +tba 2025 **Advanced Neural Data Analysis and Neuroinformatics ANDA-NI (Jülich, Germany)** Website: [[https:~~/~~/andani.info>>https://andani.info]]
22 +{{/info}}
23 +
18 18  == A resource for kick-starting work with the Elephant library ==
19 19  
20 20  The Python library [[Electrophysiology Analysis Toolkit (Elephant)>>https://python-elephant.org||rel="noopener noreferrer" target="_blank"]] provides tools for the analysis of neuronal activity data, such as spike trains, local field potentials and intracellular data. In addition to providing a platform for sharing analysis codes from different laboratories, Elephant provides a consistent and homogeneous framework for data analysis, built on a modular foundation. The underlying data model is the Neo library, a framework which easily captures a wide range of neuronal data types and methods, including dozens of file formats and network simulation tools. A common data description, as provided by the Neo library, is essential for developing interoperable analysis workflows.
... ... @@ -21,7 +21,9 @@
21 21  
22 22  In this collaborative space, we provide hands on video tutorials based on Jupyter notebooks that showcase various types of data analysis, from simple to advanced. Most notebooks are based on a common dataset published at [[https:~~/~~/gin.g-node.org/INT/multielectrode_grasp>>https://gin.g-node.org/INT/multielectrode_grasp]] (for details cf. Brochier et al (2018) Scientific Data 5, 180055. [[https:~~/~~/doi.org/10.1038/sdata.2018.55>>url:https://doi.org/10.1038/sdata.2018.55]]). All video tutorials are approximately 30 minutes in length.
23 23  
30 +In addition, tutorials presented at various workshops and schools are collected in this collab.
24 24  
32 +
25 25  == Access to the tutorials ==
26 26  
27 27  To access the tutorials, check out the drive space of this collab. The Jupyter notebooks are available in the (% style="color:#f39c12" %)notebooks(%%) folder, and links to the (% style="color:#f39c12" %)videos(%%) are embedded within each notebook. Notebooks can either be run directly on the EBRAINS Collaboratory's JupyterLab service (currently limited to HBP-affiliated members), or downloaded and run locally. For local execution, please use the provided (% style="color:#f39c12" %)requirements.txt(%%) file to generate an appropriate Python environment.
... ... @@ -55,11 +55,47 @@
55 55  Alessandra Stella|(% style="width:626px" %)Highlights two methods for detecting hidden spatio-temporal patterns in spike data.
56 56  |(% style="width:300px" %)GPFA|(% style="width:267px" %)Simon Essink|(% style="width:626px" %)Extract low-dimensional rate trajectories from the population spike activity.
57 57  |(% style="width:300px" %)Surrogate_techniques|(% style="width:267px" %)Peter Bouss|(% style="width:626px" %)Learn how to use different surrogate methods for spike trains to assist in formulating statistical null hypotheses in the presence of non-stationarity.
66 +|(% style="width:300px" %)NEST-Elephant|(% style="width:267px" %)(((
67 +Jessica Mitchell
58 58  
69 +Moritz Kern
70 +)))|(% style="width:626px" %)Learn how to simulate a neural network with NEST, analyse data with Elephant and visualize results with Viziphant.
71 +
72 +== List of past events ==
73 +
74 +
75 +March 12, 2025 **Accelerate Your Neuroscience Research with EBRAINS** **(Heidelberg, Germany)**
76 +Program: [[https:~~/~~/www.ebrains.eu/news-and-events/tutorials-and-users-day-2025>>https://www.ebrains.eu/news-and-events/tutorials-and-users-day-2025]]
77 +
78 +
79 +Sept. 24-Nov. 8, 2024 **Advanced Neural Data Analysis and Neuroinformatics ANDA-NI (Jülich, Germany)**
80 +Website: [[https:~~/~~/andani.info>>https://andani.info]]
81 +
82 +
83 +July 15, 2023 **CNS 2023, 32nd Annual Computational Neuroscience Meeting (Leipzig)**
84 +Program: [[https:~~/~~/www.cnsorg.org/cns-2023-meeting-program>>https://www.cnsorg.org/cns-2023-meeting-program]]
85 +
86 +
87 +April 5, 2023 **Data Analysis using Elephant (Hybrid), SMHB General Assembly (Jülich, Germany)**
88 +
89 +
90 +(((
91 +November 10, 2022** Simulate with EBRAINS (Online)**
92 +Agenda: [[https:~~/~~/flagship.kip.uni-heidelberg.d/jss/HBPm?m=showAgenda&meetingID=242>>https://flagship.kip.uni-heidelberg.de/jss/HBPm?m=showAgenda&meetingID=242]]
93 +
94 +
95 +July 1, 2022 **Satellite tutorial at the annual CNS meeting (Online)**
96 +Program: [[https:~~/~~/ocns.github.io/SoftwareWG/pages/software-wg-satellite-tutorials-at-cns-2022.html>>https://ocns.github.io/SoftwareWG/pages/software-wg-satellite-tutorials-at-cns-2022.html]]
97 +
98 +
99 +June 13-15, 2022 **BASSES workshop (Rome, Italy)**
100 +Program: [[https:~~/~~/www.humanbrainproject.eu/en/education/ebrains- workshops/basses/>>https://www.humanbrainproject.eu/en/education/ebrains-workshops/basses/]]
101 +
102 +
59 59  
60 60  )))
105 +)))
61 61  
62 -
63 63  (% class="col-xs-12 col-sm-4" %)
64 64  (((
65 65  {{box title="**Contents**"}}
Collaboratory.Apps.Collab.Code.CollabClass[0]
owner
... ... @@ -1,0 +1,1 @@
1 +denker