Changes for page Elephant Tutorials
Last modified by denker on 2025/04/09 07:02
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Objects (0 modified, 1 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -2,9 +2,9 @@ 2 2 ((( 3 3 (% class="container" %) 4 4 ((( 5 -= MyCollab'sExtendedTitle =5 += Elephant Tutorial Space[[image:https://elephant.readthedocs.io/en/latest/_static/elephant_logo_sidebar.png||alt="Elephant logo" style="float:right"]] = 6 6 7 - Mycollab'ssubtitle7 +Video tutorials on neuronal data analysis using Elephant 8 8 ))) 9 9 ))) 10 10 ... ... @@ -12,15 +12,45 @@ 12 12 ((( 13 13 (% class="col-xs-12 col-sm-8" %) 14 14 ((( 15 -= WhatcanIfindhere?=15 +== A resource for kick-starting work with the Elephant library == 16 16 17 -* Notice how the table of contents on the right 18 -* is automatically updated 19 -* to hold this page's headers 17 +The Python library [[Electrophysiology Analysis Toolkit (Elephant)>>https://python-elephant.org||rel="noopener noreferrer" target="_blank"]] provides tools for the analysis of neuronal activity data, such as spike trains, local field potentials and intracellular data. In addition to providing a platform for sharing analysis codes from different laboratories, Elephant provides a consistent and homogeneous framework for data analysis, built on a modular foundation. The underlying data model is the Neo library, a framework which easily captures a wide range of neuronal data types and methods, including dozens of file formats and network simulation tools. A common data description, as provided by the Neo library, is essential for developing interoperable analysis workflows. 20 20 21 - =Who has access?=19 +In this collaborative space, we provide hands on video tutorials based on Jupyter notebooks that showcase various types of data analysis, from simple to advanced. Most notebooks are based on a common dataset published at [[https:~~/~~/gin.g-node.org/INT/multielectrode_grasp>>https://gin.g-node.org/INT/multielectrode_grasp]] (for details cf. Brochier et al (2018) Scientific Data 5, 180055. [[https:~~/~~/doi.org/10.1038/sdata.2018.55>>url:https://doi.org/10.1038/sdata.2018.55]]). All video tutorials are approximately 30 minutes in length. 22 22 23 -Describe the audience of this collab. 21 + 22 +== Access to the tutorials == 23 + 24 +To access the tutorials, check out the drive space of this Collab. Video are available for download in the (% style="color:#f39c12" %)videos(%%) section, whereas the corresponding Jupyter notebooks are available in the (% style="color:#f39c12" %)notebooks(%%) folder. Notebooks can either be run directly on the EBRAINS Collaboratory (currently limited to HBP affiliated members), or downloaded and run locally. For local execution, please use the provided (% style="color:#f39c12" %)requirements.txt(%%) file to generate an appropriate Python environment. 25 + 26 +=== Execution on the EBRAINS Collaboratory === 27 + 28 +* Open the EBRAINS lab by selecting the corresponding (% style="color:#f39c12" %)Lab(%%) menu entry on the left. 29 +//Please note: Jupyterlab functionality is currently in beta and not yet available to non-HBP-affiliated Collaboratory users. Please check back in the near future.// 30 +* In the lab, navigate to a particular notebook and open and execute it. To save changes you may want to make, please create a copy of the notebook in a Collab of your own (i.e., where you have write permissions). 31 + 32 +=== Local execution === 33 + 34 +* Open the EBRAINS drive by selecting the corresponding (% style="color:#f39c12" %)Drive(%%) menu entry on the left. 35 +* Download a particular notebook and the (% style="color:#f39c12" %)requirements.txt(%%) to your computer. 36 +* Create a Python environment based on the (% style="color:#f39c12" %)requirements.txt(%%) file. The details will depend on your particular Python setup. 37 + 38 +== List of available tutorials == 39 + 40 + 41 +(% style="margin-right:auto" %) 42 +|=(% style="width: 300px;" %)Tutorial|=(% style="width: 267px;" %)Hosts and Authors|=(% style="width: 626px;" %)Content 43 +|(% style="width:300px" %)LFP_analysis|(% style="width:267px" %)Robin Gutzen|(% style="width:626px" %)Apply basic LFP analysis techniques, such as power spectra. 44 +|(% style="width:300px" %)Spike_analysis|(% style="width:267px" %)((( 45 +Cristiano Köhler 46 +Alexander Kleinjohann 47 +)))|(% style="width:626px" %)Perform basic statistical analysis of spike trains from rate profiles to pair-wise correlations. 48 +|(% style="width:300px" %)Spatio-temporal_spike_patterns|(% style="width:267px" %)Regimatas Jurkus 49 +Alessandra Stella|(% style="width:626px" %)Highlights two methods for detecting hidden spatio-temporal patterns in spike data. 50 +|(% style="width:300px" %)GPFA|(% style="width:267px" %)Simon Essink|(% style="width:626px" %)Extract low-dimensional rate trajectories from the population spike activity. 51 +|(% style="width:300px" %)Surrogate_techniques|(% style="width:267px" %)Peter Bouss|(% style="width:626px" %)Learn how to use different surrogate methods for spike trains to assist in formulating statistical null hypotheses in the presence of non-stationarity. 52 + 53 + 24 24 ))) 25 25 26 26
- XWiki.XWikiRights[2]
-
- Allow/Deny
-
... ... @@ -1,0 +1,1 @@ 1 +Allow - Groups
-
... ... @@ -1,0 +1,1 @@ 1 +Collabs.elephant-tutorials._.groups.collab-elephant-tutorials-administrator - Levels
-
... ... @@ -1,0 +1,1 @@ 1 +view,comment,edit,delete