Changes for page Elephant Tutorials
Last modified by denker on 2026/01/22 10:27
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -2,12 +2,12 @@ 2 2 ((( 3 3 (% class="container" %) 4 4 ((( 5 -= (% style="color:#f39c12" %)Elephant Tutorial Space[[image:https://elephant.readthedocs.io/en/latest/_static/elephant_logo_sidebar.png||alt="Elephant logo" style ="float:right"]](%%) =5 += (% style="color:#f39c12" %)Elephant Tutorial Space[[image:https://elephant.readthedocs.io/en/latest/_static/elephant_logo_sidebar.png||alt="Elephant logo" data-xwiki-image-style-alignment="end"]](%%) = 6 6 7 7 (% style="color:#4e5f70" %)Interactive video tutorials on 8 8 neuronal data analysis using Elephant 9 9 10 - (%style="color:#e74c3c" %)**~-~- in beta ~-~-**10 + 11 11 ))) 12 12 ))) 13 13 ... ... @@ -15,6 +15,14 @@ 15 15 ((( 16 16 (% class="col-xs-12 col-sm-8" %) 17 17 ((( 18 +== Upcoming training events == 19 + 20 +{{info}} 21 +March 17, 2026: Elephant Training as part of the **[[//EduBrains Training Series//>>https://foldercase.com/proext.php?pid=466]]** 22 +\\June 15-July 31, 2026 **Advanced Neural Data Analysis and Neuroinformatics ANDA-NI (Jülich, Germany)** 23 +Website: [[https:~~/~~/andani.info>>https://andani.info]] 24 +{{/info}} 25 + 18 18 == A resource for kick-starting work with the Elephant library == 19 19 20 20 The Python library [[Electrophysiology Analysis Toolkit (Elephant)>>https://python-elephant.org||rel="noopener noreferrer" target="_blank"]] provides tools for the analysis of neuronal activity data, such as spike trains, local field potentials and intracellular data. In addition to providing a platform for sharing analysis codes from different laboratories, Elephant provides a consistent and homogeneous framework for data analysis, built on a modular foundation. The underlying data model is the Neo library, a framework which easily captures a wide range of neuronal data types and methods, including dozens of file formats and network simulation tools. A common data description, as provided by the Neo library, is essential for developing interoperable analysis workflows. ... ... @@ -21,7 +21,9 @@ 21 21 22 22 In this collaborative space, we provide hands on video tutorials based on Jupyter notebooks that showcase various types of data analysis, from simple to advanced. Most notebooks are based on a common dataset published at [[https:~~/~~/gin.g-node.org/INT/multielectrode_grasp>>https://gin.g-node.org/INT/multielectrode_grasp]] (for details cf. Brochier et al (2018) Scientific Data 5, 180055. [[https:~~/~~/doi.org/10.1038/sdata.2018.55>>url:https://doi.org/10.1038/sdata.2018.55]]). All video tutorials are approximately 30 minutes in length. 23 23 32 +In addition, tutorials presented at various workshops and schools are collected in this collab. 24 24 34 + 25 25 == Access to the tutorials == 26 26 27 27 To access the tutorials, check out the drive space of this collab. The Jupyter notebooks are available in the (% style="color:#f39c12" %)notebooks(%%) folder, and links to the (% style="color:#f39c12" %)videos(%%) are embedded within each notebook. Notebooks can either be run directly on the EBRAINS Collaboratory's JupyterLab service (currently limited to HBP-affiliated members), or downloaded and run locally. For local execution, please use the provided (% style="color:#f39c12" %)requirements.txt(%%) file to generate an appropriate Python environment. ... ... @@ -44,22 +44,67 @@ 44 44 == List of available tutorials == 45 45 46 46 47 -(% style="margin-right:auto" %) 48 -|=(% style="width: 300px;" %)Tutorial|=(% style="width: 267px;" %)Hosts and Authors|=(% style="width: 626px;" %)Content49 -|(% style="width:300px" %)LFP_analysis|(% style="width:267px" %)Robin Gutzen|(% style="width: 626px" %)Apply basic LFP analysis techniques, such as power spectra.57 +(% style="margin-right:auto; width:1429.5px" %) 58 +|=(% style="width: 300px;" %)Tutorial|=(% style="width: 267px;" %)Hosts and Authors|=(% style="width: 848px;" %)Content 59 +|(% style="width:300px" %)LFP_analysis|(% style="width:267px" %)Robin Gutzen|(% style="width:848px" %)Apply basic LFP analysis techniques, such as power spectra. 50 50 |(% style="width:300px" %)Spike_analysis|(% style="width:267px" %)((( 51 51 Cristiano Köhler 52 52 Alexander Kleinjohann 53 -)))|(% style="width: 626px" %)Perform basic statistical analysis of spike trains from rate profiles to pair-wise correlations.63 +)))|(% style="width:848px" %)Perform basic statistical analysis of spike trains from rate profiles to pair-wise correlations. 54 54 |(% style="width:300px" %)Spatio-temporal_spike_patterns|(% style="width:267px" %)Regimatas Jurkus 55 -Alessandra Stella|(% style="width:626px" %)Highlights two methods for detecting hidden spatio-temporal patterns in spike data. 56 -|(% style="width:300px" %)GPFA|(% style="width:267px" %)Simon Essink|(% style="width:626px" %)Extract low-dimensional rate trajectories from the population spike activity. 57 -|(% style="width:300px" %)Surrogate_techniques|(% style="width:267px" %)Peter Bouss|(% style="width:626px" %)Learn how to use different surrogate methods for spike trains to assist in formulating statistical null hypotheses in the presence of non-stationarity. 65 +Alessandra Stella|(% style="width:848px" %)Highlights two methods for detecting hidden spatio-temporal patterns in spike data. 66 +|(% style="width:300px" %)GPFA|(% style="width:267px" %)Simon Essink|(% style="width:848px" %)Extract low-dimensional rate trajectories from the population spike activity. 67 +|(% style="width:300px" %)Surrogate_techniques|(% style="width:267px" %)Peter Bouss|(% style="width:848px" %)Learn how to use different surrogate methods for spike trains to assist in formulating statistical null hypotheses in the presence of non-stationarity. 68 +|(% style="width:300px" %)NEST-Elephant|(% style="width:267px" %)((( 69 +Jessica Mitchell 70 +Moritz Kern 71 +)))|(% style="width:848px" %)Learn how to simulate a neural network with NEST, analyse data with Elephant and visualize results with Viziphant. 58 58 73 +== List of external teaching and training resources == 74 + 75 +* **IBOTS Code** offers a wealth of teaching and training material, including Neo and Elephant training, at: [[https:~~/~~/ibots-bonn.de/teaching/>>https://ibots-bonn.de/teaching/]] 76 + 77 +== == 78 + 79 +== List of past events == 80 + 81 + 82 +August 25-26, 2025 **INCF-SeRC-EBRAINS-Sweden workshop on FAIR neuroscience 2025 on Managing and Analyzing electrophysiology data using Neo and Elephant (Stockholm, Sweden)** 83 +Program: [[https:~~/~~/www.ebrains.eu/news-and-events/tutorials-and-users-day-2025>>https://www.ebrains.eu/news-and-events/tutorials-and-users-day-2025]] 84 + 85 + 86 +March 12, 2025 **Accelerate Your Neuroscience Research with EBRAINS** **(Heidelberg, Germany)** 87 +Program: [[https:~~/~~/www.ebrains.eu/news-and-events/tutorials-and-users-day-2025>>https://www.ebrains.eu/news-and-events/tutorials-and-users-day-2025]] 88 + 89 + 90 +Sept. 24-Nov. 8, 2024 **Advanced Neural Data Analysis and Neuroinformatics ANDA-NI (Jülich, Germany)** 91 +Website: [[https:~~/~~/andani.info>>https://andani.info]] 92 + 93 + 94 +July 15, 2023 **CNS 2023, 32nd Annual Computational Neuroscience Meeting (Leipzig)** 95 +Program: [[https:~~/~~/www.cnsorg.org/cns-2023-meeting-program>>https://www.cnsorg.org/cns-2023-meeting-program]] 96 + 97 + 98 +April 5, 2023 **Data Analysis using Elephant (Hybrid), SMHB General Assembly (Jülich, Germany)** 99 + 100 + 101 +((( 102 +November 10, 2022** Simulate with EBRAINS (Online)** 103 +Agenda: [[https:~~/~~/flagship.kip.uni-heidelberg.d/jss/HBPm?m=showAgenda&meetingID=242>>https://flagship.kip.uni-heidelberg.de/jss/HBPm?m=showAgenda&meetingID=242]] 104 + 105 + 106 +July 1, 2022 **Satellite tutorial at the annual CNS meeting (Online)** 107 +Program: [[https:~~/~~/ocns.github.io/SoftwareWG/pages/software-wg-satellite-tutorials-at-cns-2022.html>>https://ocns.github.io/SoftwareWG/pages/software-wg-satellite-tutorials-at-cns-2022.html]] 108 + 109 + 110 +June 13-15, 2022 **BASSES workshop (Rome, Italy)** 111 +Program: [[https:~~/~~/www.humanbrainproject.eu/en/education/ebrains- workshops/basses/>>https://www.humanbrainproject.eu/en/education/ebrains-workshops/basses/]] 112 + 113 + 59 59 60 60 ))) 116 +))) 61 61 62 - 63 63 (% class="col-xs-12 col-sm-4" %) 64 64 ((( 65 65 {{box title="**Contents**"}}