Changes for page Elephant Tutorials

Last modified by denker on 2025/04/09 07:02

From version 31.1
edited by denker
on 2022/06/29 11:31
Change comment: There is no comment for this version
To version 41.1
edited by denker
on 2022/11/11 12:18
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -7,7 +7,10 @@
7 7  (% style="color:#4e5f70" %)Interactive video tutorials on
8 8  neuronal data analysis using Elephant
9 9  
10 -(% style="color:#e74c3c" %)**Upcoming: CNS 2022**
10 +(% style="color:#e74c3c" %)Upcoming Sessions:
11 +
12 +(% style="color:#e74c3c" %)6.12.22 Intermediate data analysis in Python: Using Neo and Elephant for
13 +neural activity analysis
11 11  )))
12 12  )))
13 13  
... ... @@ -15,6 +15,22 @@
15 15  (((
16 16  (% class="col-xs-12 col-sm-8" %)
17 17  (((
21 +{{info}}
22 +== Intermediate Data Analysis in Python (Hybrid) ==
23 +
24 +**Using Neo and Elephant for neural activity analysis**
25 +
26 +=== Information ===
27 +
28 +Date: Tuesday, December 6, 2022
29 +
30 +Time: tba
31 +
32 +Registration & Agenda: tba
33 +
34 +
35 +{{/info}}
36 +
18 18  == A resource for kick-starting work with the Elephant library ==
19 19  
20 20  The Python library [[Electrophysiology Analysis Toolkit (Elephant)>>https://python-elephant.org||rel="noopener noreferrer" target="_blank"]] provides tools for the analysis of neuronal activity data, such as spike trains, local field potentials and intracellular data. In addition to providing a platform for sharing analysis codes from different laboratories, Elephant provides a consistent and homogeneous framework for data analysis, built on a modular foundation. The underlying data model is the Neo library, a framework which easily captures a wide range of neuronal data types and methods, including dozens of file formats and network simulation tools. A common data description, as provided by the Neo library, is essential for developing interoperable analysis workflows.
... ... @@ -58,10 +58,17 @@
58 58  |(% style="width:300px" %)GPFA|(% style="width:267px" %)Simon Essink|(% style="width:626px" %)Extract low-dimensional rate trajectories from the population spike activity.
59 59  |(% style="width:300px" %)Surrogate_techniques|(% style="width:267px" %)Peter Bouss|(% style="width:626px" %)Learn how to use different surrogate methods for spike trains to assist in formulating statistical null hypotheses in the presence of non-stationarity.
60 60  
61 -
80 +== List of past events
81 + ==
82 +
83 +* (((
84 +November 10, 2022** Simulate with EBRAINS (Online)**
85 +Agenda: https:~/~/flagship.kip.uni-heidelberg.de/jss/HBPm?m=showAgenda&meetingID=242
62 62  )))
87 +)))
63 63  
64 64  
90 +
65 65  (% class="col-xs-12 col-sm-4" %)
66 66  (((
67 67  {{box title="**Contents**"}}