Changes for page Elephant Tutorials

Last modified by denker on 2025/04/09 07:02

From version 41.1
edited by denker
on 2022/11/11 12:18
Change comment: There is no comment for this version
To version 31.1
edited by denker
on 2022/06/29 11:31
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -7,10 +7,7 @@
7 7  (% style="color:#4e5f70" %)Interactive video tutorials on
8 8  neuronal data analysis using Elephant
9 9  
10 -(% style="color:#e74c3c" %)Upcoming Sessions:
11 -
12 -(% style="color:#e74c3c" %)6.12.22 Intermediate data analysis in Python: Using Neo and Elephant for
13 -neural activity analysis
10 +(% style="color:#e74c3c" %)**Upcoming: CNS 2022**
14 14  )))
15 15  )))
16 16  
... ... @@ -18,22 +18,6 @@
18 18  (((
19 19  (% class="col-xs-12 col-sm-8" %)
20 20  (((
21 -{{info}}
22 -== Intermediate Data Analysis in Python (Hybrid) ==
23 -
24 -**Using Neo and Elephant for neural activity analysis**
25 -
26 -=== Information ===
27 -
28 -Date: Tuesday, December 6, 2022
29 -
30 -Time: tba
31 -
32 -Registration & Agenda: tba
33 -
34 -
35 -{{/info}}
36 -
37 37  == A resource for kick-starting work with the Elephant library ==
38 38  
39 39  The Python library [[Electrophysiology Analysis Toolkit (Elephant)>>https://python-elephant.org||rel="noopener noreferrer" target="_blank"]] provides tools for the analysis of neuronal activity data, such as spike trains, local field potentials and intracellular data. In addition to providing a platform for sharing analysis codes from different laboratories, Elephant provides a consistent and homogeneous framework for data analysis, built on a modular foundation. The underlying data model is the Neo library, a framework which easily captures a wide range of neuronal data types and methods, including dozens of file formats and network simulation tools. A common data description, as provided by the Neo library, is essential for developing interoperable analysis workflows.
... ... @@ -77,17 +77,10 @@
77 77  |(% style="width:300px" %)GPFA|(% style="width:267px" %)Simon Essink|(% style="width:626px" %)Extract low-dimensional rate trajectories from the population spike activity.
78 78  |(% style="width:300px" %)Surrogate_techniques|(% style="width:267px" %)Peter Bouss|(% style="width:626px" %)Learn how to use different surrogate methods for spike trains to assist in formulating statistical null hypotheses in the presence of non-stationarity.
79 79  
80 -== List of past events
81 - ==
82 -
83 -* (((
84 -November 10, 2022** Simulate with EBRAINS (Online)**
85 -Agenda: https:~/~/flagship.kip.uni-heidelberg.de/jss/HBPm?m=showAgenda&meetingID=242
61 +
86 86  )))
87 -)))
88 88  
89 89  
90 -
91 91  (% class="col-xs-12 col-sm-4" %)
92 92  (((
93 93  {{box title="**Contents**"}}