Changes for page Elephant Tutorials
Last modified by denker on 2025/04/09 07:02
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -7,11 +7,7 @@ 7 7 (% style="color:#4e5f70" %)Interactive video tutorials on 8 8 neuronal data analysis using Elephant 9 9 10 - 11 -(% style="color:#e74c3c" %)Upcoming Sessions: 12 - 13 -(% style="color:#e74c3c" %)December 6, 2022 Intermediate data analysis in Python: Using Neo and Elephant for 14 -neural activity analysis 10 +(% style="color:#e74c3c" %)**Upcoming: CNS 2022** 15 15 ))) 16 16 ))) 17 17 ... ... @@ -19,21 +19,6 @@ 19 19 ((( 20 20 (% class="col-xs-12 col-sm-8" %) 21 21 ((( 22 -{{info}} 23 -(% class="wikigeneratedid wikigeneratedheader" id="HIntermediateDataAnalysisinPython28Hybrid29" %) 24 -**Intermediate Data Analysis in Python (Hybrid)** 25 - 26 -**Session: Using Neo and Elephant for neural activity analysis** 27 - 28 -Date: Tuesday, December 6, 2022 29 - 30 -Time: tba 31 - 32 -Registration & Agenda: tba 33 - 34 - 35 -{{/info}} 36 - 37 37 == A resource for kick-starting work with the Elephant library == 38 38 39 39 The Python library [[Electrophysiology Analysis Toolkit (Elephant)>>https://python-elephant.org||rel="noopener noreferrer" target="_blank"]] provides tools for the analysis of neuronal activity data, such as spike trains, local field potentials and intracellular data. In addition to providing a platform for sharing analysis codes from different laboratories, Elephant provides a consistent and homogeneous framework for data analysis, built on a modular foundation. The underlying data model is the Neo library, a framework which easily captures a wide range of neuronal data types and methods, including dozens of file formats and network simulation tools. A common data description, as provided by the Neo library, is essential for developing interoperable analysis workflows. ... ... @@ -77,17 +77,10 @@ 77 77 |(% style="width:300px" %)GPFA|(% style="width:267px" %)Simon Essink|(% style="width:626px" %)Extract low-dimensional rate trajectories from the population spike activity. 78 78 |(% style="width:300px" %)Surrogate_techniques|(% style="width:267px" %)Peter Bouss|(% style="width:626px" %)Learn how to use different surrogate methods for spike trains to assist in formulating statistical null hypotheses in the presence of non-stationarity. 79 79 80 -== List of past events == 81 - 82 - 83 -* ((( 84 -November 10, 2022** Simulate with EBRAINS (Online)** 85 -Agenda: https:~/~/flagship.kip.uni-heidelberg.de/jss/HBPm?m=showAgenda&meetingID=242 61 + 86 86 ))) 87 -))) 88 88 89 89 90 - 91 91 (% class="col-xs-12 col-sm-4" %) 92 92 ((( 93 93 {{box title="**Contents**"}}