Changes for page Elephant Tutorials
Last modified by denker on 2025/04/09 07:02
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -7,10 +7,7 @@ 7 7 (% style="color:#4e5f70" %)Interactive video tutorials on 8 8 neuronal data analysis using Elephant 9 9 10 - 11 -(% style="color:#e74c3c" %)Upcoming training event: 12 - 13 -(% style="color:#e74c3c" %)December 6, 2022 Intermediate data analysis in Python: Using Neo and Elephant for neural activity analysis 10 +(% style="color:#e74c3c" %)**Upcoming: CNS 2022** 14 14 ))) 15 15 ))) 16 16 ... ... @@ -18,18 +18,6 @@ 18 18 ((( 19 19 (% class="col-xs-12 col-sm-8" %) 20 20 ((( 21 -== Upcoming training events == 22 - 23 -{{info}} 24 -**Intermediate Data Analysis in Python (Hybrid)** 25 -**Session: Using Neo and Elephant for neural activity analysis** 26 -Date: Tuesday, December 6, 2022 27 -Time: tba 28 -Registration & Agenda: tba 29 - 30 - 31 -{{/info}} 32 - 33 33 == A resource for kick-starting work with the Elephant library == 34 34 35 35 The Python library [[Electrophysiology Analysis Toolkit (Elephant)>>https://python-elephant.org||rel="noopener noreferrer" target="_blank"]] provides tools for the analysis of neuronal activity data, such as spike trains, local field potentials and intracellular data. In addition to providing a platform for sharing analysis codes from different laboratories, Elephant provides a consistent and homogeneous framework for data analysis, built on a modular foundation. The underlying data model is the Neo library, a framework which easily captures a wide range of neuronal data types and methods, including dozens of file formats and network simulation tools. A common data description, as provided by the Neo library, is essential for developing interoperable analysis workflows. ... ... @@ -73,26 +73,10 @@ 73 73 |(% style="width:300px" %)GPFA|(% style="width:267px" %)Simon Essink|(% style="width:626px" %)Extract low-dimensional rate trajectories from the population spike activity. 74 74 |(% style="width:300px" %)Surrogate_techniques|(% style="width:267px" %)Peter Bouss|(% style="width:626px" %)Learn how to use different surrogate methods for spike trains to assist in formulating statistical null hypotheses in the presence of non-stationarity. 75 75 76 -== List of past events == 77 - 78 -((( 79 - 80 -November 10, 2022** Simulate with EBRAINS (Online)** 81 -Agenda: [[https:~~/~~/flagship.kip.uni-heidelberg.d/jss/HBPm?m=showAgenda&meetingID=242>>https://flagship.kip.uni-heidelberg.de/jss/HBPm?m=showAgenda&meetingID=242]] 82 - 83 - 84 -July 1, 2022 **Satellite tutorial at the annual CNS meeting (Online)** 85 -Program: [[https:~~/~~/ocns.github.io/SoftwareWG/pages/software-wg-satellite-tutorials-at-cns-2022.html>>https://ocns.github.io/SoftwareWG/pages/software-wg-satellite-tutorials-at-cns-2022.html]] 86 - 87 - 88 -June 13-15, 2022 **BASSES workshop (Rome, Italy)** 89 -Program: [[https:~~/~~/www.humanbrainproject.eu/en/education/ebrains- workshops/basses/>>https://www.humanbrainproject.eu/en/education/ebrains-workshops/basses/]] 90 - 91 - 92 92 93 93 ))) 94 -))) 95 95 64 + 96 96 (% class="col-xs-12 col-sm-4" %) 97 97 ((( 98 98 {{box title="**Contents**"}}