Changes for page Elephant Tutorials
Last modified by denker on 2025/04/09 07:02
From version 52.1
edited by moritzkern
on 2023/06/27 10:37
on 2023/06/27 10:37
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. moritzkern1 +XWiki.denker - Content
-
... ... @@ -7,7 +7,7 @@ 7 7 (% style="color:#4e5f70" %)Interactive video tutorials on 8 8 neuronal data analysis using Elephant 9 9 10 - 10 +(% style="color:#e74c3c" %)**Upcoming: CNS 2022** 11 11 ))) 12 12 ))) 13 13 ... ... @@ -15,13 +15,6 @@ 15 15 ((( 16 16 (% class="col-xs-12 col-sm-8" %) 17 17 ((( 18 -== Upcoming training events == 19 - 20 -{{info}} 21 -July 15, 2022 CNS 2023, 32nd Annual Computational Neuroscience Meeting (Leipzig) 22 -Program: [[https:~~/~~/www.cnsorg.org/cns-2023-meeting-program>>https://www.cnsorg.org/cns-2023-meeting-program]] 23 -{{/info}} 24 - 25 25 == A resource for kick-starting work with the Elephant library == 26 26 27 27 The Python library [[Electrophysiology Analysis Toolkit (Elephant)>>https://python-elephant.org||rel="noopener noreferrer" target="_blank"]] provides tools for the analysis of neuronal activity data, such as spike trains, local field potentials and intracellular data. In addition to providing a platform for sharing analysis codes from different laboratories, Elephant provides a consistent and homogeneous framework for data analysis, built on a modular foundation. The underlying data model is the Neo library, a framework which easily captures a wide range of neuronal data types and methods, including dozens of file formats and network simulation tools. A common data description, as provided by the Neo library, is essential for developing interoperable analysis workflows. ... ... @@ -64,36 +64,11 @@ 64 64 Alessandra Stella|(% style="width:626px" %)Highlights two methods for detecting hidden spatio-temporal patterns in spike data. 65 65 |(% style="width:300px" %)GPFA|(% style="width:267px" %)Simon Essink|(% style="width:626px" %)Extract low-dimensional rate trajectories from the population spike activity. 66 66 |(% style="width:300px" %)Surrogate_techniques|(% style="width:267px" %)Peter Bouss|(% style="width:626px" %)Learn how to use different surrogate methods for spike trains to assist in formulating statistical null hypotheses in the presence of non-stationarity. 67 -|(% style="width:300px" %)NEST-Elephant|(% style="width:267px" %)((( 68 -Jessica Mitchell 69 69 70 -Moritz Kern 71 -)))|(% style="width:626px" %)Learn how to simulate a neural network with NEST, analyse data with Elephant and visualize results with Viziphant. 72 - 73 -== List of past events == 74 - 75 - 76 -April 5, 2023 **Data Analysis using Elephant (Hybrid), SMHB General Assembly** 77 -Location: Forschungszentrum Juelich, Germany 78 - 79 - 80 -((( 81 -November 10, 2022** Simulate with EBRAINS (Online)** 82 -Agenda: [[https:~~/~~/flagship.kip.uni-heidelberg.d/jss/HBPm?m=showAgenda&meetingID=242>>https://flagship.kip.uni-heidelberg.de/jss/HBPm?m=showAgenda&meetingID=242]] 83 - 84 - 85 -July 1, 2022 **Satellite tutorial at the annual CNS meeting (Online)** 86 -Program: [[https:~~/~~/ocns.github.io/SoftwareWG/pages/software-wg-satellite-tutorials-at-cns-2022.html>>https://ocns.github.io/SoftwareWG/pages/software-wg-satellite-tutorials-at-cns-2022.html]] 87 - 88 - 89 -June 13-15, 2022 **BASSES workshop (Rome, Italy)** 90 -Program: [[https:~~/~~/www.humanbrainproject.eu/en/education/ebrains- workshops/basses/>>https://www.humanbrainproject.eu/en/education/ebrains-workshops/basses/]] 91 - 92 - 93 93 94 94 ))) 95 -))) 96 96 64 + 97 97 (% class="col-xs-12 col-sm-4" %) 98 98 ((( 99 99 {{box title="**Contents**"}}