Changes for page Elephant Tutorials

Last modified by denker on 2025/04/09 07:02

From version 53.1
edited by moritzkern
on 2023/08/25 13:33
Change comment: There is no comment for this version
To version 28.1
edited by denker
on 2021/04/16 21:38
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.moritzkern
1 +XWiki.denker
Content
... ... @@ -7,7 +7,7 @@
7 7  (% style="color:#4e5f70" %)Interactive video tutorials on
8 8  neuronal data analysis using Elephant
9 9  
10 -
10 +(% style="color:#e74c3c" %)**~-~- in beta  ~-~-**
11 11  )))
12 12  )))
13 13  
... ... @@ -15,12 +15,6 @@
15 15  (((
16 16  (% class="col-xs-12 col-sm-8" %)
17 17  (((
18 -== Upcoming training events ==
19 -
20 -{{info}}
21 -
22 -{{/info}}
23 -
24 24  == A resource for kick-starting work with the Elephant library ==
25 25  
26 26  The Python library [[Electrophysiology Analysis Toolkit (Elephant)>>https://python-elephant.org||rel="noopener noreferrer" target="_blank"]] provides tools for the analysis of neuronal activity data, such as spike trains, local field potentials and intracellular data. In addition to providing a platform for sharing analysis codes from different laboratories, Elephant provides a consistent and homogeneous framework for data analysis, built on a modular foundation. The underlying data model is the Neo library, a framework which easily captures a wide range of neuronal data types and methods, including dozens of file formats and network simulation tools. A common data description, as provided by the Neo library, is essential for developing interoperable analysis workflows.
... ... @@ -27,9 +27,7 @@
27 27  
28 28  In this collaborative space, we provide hands on video tutorials based on Jupyter notebooks that showcase various types of data analysis, from simple to advanced. Most notebooks are based on a common dataset published at [[https:~~/~~/gin.g-node.org/INT/multielectrode_grasp>>https://gin.g-node.org/INT/multielectrode_grasp]] (for details cf. Brochier et al (2018) Scientific Data 5, 180055. [[https:~~/~~/doi.org/10.1038/sdata.2018.55>>url:https://doi.org/10.1038/sdata.2018.55]]). All video tutorials are approximately 30 minutes in length.
29 29  
30 -In addition, tutorials presented at various workshops and schools are collected in this collab.
31 31  
32 -
33 33  == Access to the tutorials ==
34 34  
35 35  To access the tutorials, check out the drive space of this collab. The Jupyter notebooks are available in the (% style="color:#f39c12" %)notebooks(%%) folder, and links to the (% style="color:#f39c12" %)videos(%%) are embedded within each notebook. Notebooks can either be run directly on the EBRAINS Collaboratory's JupyterLab service (currently limited to HBP-affiliated members), or downloaded and run locally. For local execution, please use the provided (% style="color:#f39c12" %)requirements.txt(%%) file to generate an appropriate Python environment.
... ... @@ -63,40 +63,11 @@
63 63  Alessandra Stella|(% style="width:626px" %)Highlights two methods for detecting hidden spatio-temporal patterns in spike data.
64 64  |(% style="width:300px" %)GPFA|(% style="width:267px" %)Simon Essink|(% style="width:626px" %)Extract low-dimensional rate trajectories from the population spike activity.
65 65  |(% style="width:300px" %)Surrogate_techniques|(% style="width:267px" %)Peter Bouss|(% style="width:626px" %)Learn how to use different surrogate methods for spike trains to assist in formulating statistical null hypotheses in the presence of non-stationarity.
66 -|(% style="width:300px" %)NEST-Elephant|(% style="width:267px" %)(((
67 -Jessica Mitchell
68 68  
69 -Moritz Kern
70 -)))|(% style="width:626px" %)Learn how to simulate a neural network with NEST, analyse data with Elephant and visualize results with Viziphant.
71 -
72 -== List of past events ==
73 -
74 -
75 -July 15, 2022 **CNS 2023, 32nd Annual Computational Neuroscience Meeting** (Leipzig)
76 -Program: [[https:~~/~~/www.cnsorg.org/cns-2023-meeting-program>>https://www.cnsorg.org/cns-2023-meeting-program]]
77 -
78 -
79 -April 5, 2023 **Data Analysis using Elephant (Hybrid), SMHB General Assembly**
80 -Location: Forschungszentrum Juelich, Germany
81 -
82 -
83 -(((
84 -November 10, 2022** Simulate with EBRAINS (Online)**
85 -Agenda: [[https:~~/~~/flagship.kip.uni-heidelberg.d/jss/HBPm?m=showAgenda&meetingID=242>>https://flagship.kip.uni-heidelberg.de/jss/HBPm?m=showAgenda&meetingID=242]]
86 -
87 -
88 -July 1, 2022 **Satellite tutorial at the annual CNS meeting (Online)**
89 -Program: [[https:~~/~~/ocns.github.io/SoftwareWG/pages/software-wg-satellite-tutorials-at-cns-2022.html>>https://ocns.github.io/SoftwareWG/pages/software-wg-satellite-tutorials-at-cns-2022.html]]
90 -
91 -
92 -June 13-15, 2022 **BASSES workshop (Rome, Italy)**
93 -Program: [[https:~~/~~/www.humanbrainproject.eu/en/education/ebrains- workshops/basses/>>https://www.humanbrainproject.eu/en/education/ebrains-workshops/basses/]]
94 -
95 -
96 96  
97 97  )))
98 -)))
99 99  
62 +
100 100  (% class="col-xs-12 col-sm-4" %)
101 101  (((
102 102  {{box title="**Contents**"}}
Collaboratory.Apps.Collab.Code.CollabClass[0]
owner
... ... @@ -1,1 +1,0 @@
1 -denker