Changes for page Elephant Tutorials
Last modified by denker on 2026/01/22 10:27
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Objects (1 modified, 2 added, 2 removed)
Details
- Page properties
-
- Content
-
... ... @@ -2,12 +2,12 @@ 2 2 ((( 3 3 (% class="container" %) 4 4 ((( 5 -= (% style="color:#f39c12" %)Elephant Tutorial Space[[image:https://elephant.readthedocs.io/en/latest/_static/elephant_logo_sidebar.png||alt="Elephant logo" data-xwiki-image-style-alignment="end"]](%%) =5 += (% style="color:#f39c12" %)Elephant Tutorial Space[[image:https://elephant.readthedocs.io/en/latest/_static/elephant_logo_sidebar.png||alt="Elephant logo" style="float:right"]](%%) = 6 6 7 7 (% style="color:#4e5f70" %)Interactive video tutorials on 8 8 neuronal data analysis using Elephant 9 9 10 - 10 +(% style="color:#e74c3c" %)**~-~- in beta for the HBP Student Conference workshop ~-~-** 11 11 ))) 12 12 ))) 13 13 ... ... @@ -15,14 +15,6 @@ 15 15 ((( 16 16 (% class="col-xs-12 col-sm-8" %) 17 17 ((( 18 -== Upcoming training events == 19 - 20 -{{info}} 21 -March 17, 2026: Elephant Training as part of the **[[//EduBrains Training Series//>>https://foldercase.com/proext.php?pid=466]]** 22 -\\June 15-July 31, 2026 **Advanced Neural Data Analysis and Neuroinformatics ANDA-NI (Jülich, Germany)** 23 -Website: [[https:~~/~~/andani.info>>https://andani.info]] 24 -{{/info}} 25 - 26 26 == A resource for kick-starting work with the Elephant library == 27 27 28 28 The Python library [[Electrophysiology Analysis Toolkit (Elephant)>>https://python-elephant.org||rel="noopener noreferrer" target="_blank"]] provides tools for the analysis of neuronal activity data, such as spike trains, local field potentials and intracellular data. In addition to providing a platform for sharing analysis codes from different laboratories, Elephant provides a consistent and homogeneous framework for data analysis, built on a modular foundation. The underlying data model is the Neo library, a framework which easily captures a wide range of neuronal data types and methods, including dozens of file formats and network simulation tools. A common data description, as provided by the Neo library, is essential for developing interoperable analysis workflows. ... ... @@ -29,9 +29,7 @@ 29 29 30 30 In this collaborative space, we provide hands on video tutorials based on Jupyter notebooks that showcase various types of data analysis, from simple to advanced. Most notebooks are based on a common dataset published at [[https:~~/~~/gin.g-node.org/INT/multielectrode_grasp>>https://gin.g-node.org/INT/multielectrode_grasp]] (for details cf. Brochier et al (2018) Scientific Data 5, 180055. [[https:~~/~~/doi.org/10.1038/sdata.2018.55>>url:https://doi.org/10.1038/sdata.2018.55]]). All video tutorials are approximately 30 minutes in length. 31 31 32 -In addition, tutorials presented at various workshops and schools are collected in this collab. 33 33 34 - 35 35 == Access to the tutorials == 36 36 37 37 To access the tutorials, check out the drive space of this collab. The Jupyter notebooks are available in the (% style="color:#f39c12" %)notebooks(%%) folder, and links to the (% style="color:#f39c12" %)videos(%%) are embedded within each notebook. Notebooks can either be run directly on the EBRAINS Collaboratory's JupyterLab service (currently limited to HBP-affiliated members), or downloaded and run locally. For local execution, please use the provided (% style="color:#f39c12" %)requirements.txt(%%) file to generate an appropriate Python environment. ... ... @@ -54,67 +54,22 @@ 54 54 == List of available tutorials == 55 55 56 56 57 -(% style="margin-right:auto ; width:1429.5px" %)58 -|=(% style="width: 300px;" %)Tutorial|=(% style="width: 267px;" %)Hosts and Authors|=(% style="width: 848px;" %)Content59 -|(% style="width:300px" %)LFP_analysis|(% style="width:267px" %)Robin Gutzen|(% style="width: 848px" %)Apply basic LFP analysis techniques, such as power spectra.47 +(% style="margin-right:auto" %) 48 +|=(% style="width: 300px;" %)Tutorial|=(% style="width: 267px;" %)Hosts and Authors|=(% style="width: 626px;" %)Content 49 +|(% style="width:300px" %)LFP_analysis|(% style="width:267px" %)Robin Gutzen|(% style="width:626px" %)Apply basic LFP analysis techniques, such as power spectra. 60 60 |(% style="width:300px" %)Spike_analysis|(% style="width:267px" %)((( 61 61 Cristiano Köhler 62 62 Alexander Kleinjohann 63 -)))|(% style="width: 848px" %)Perform basic statistical analysis of spike trains from rate profiles to pair-wise correlations.53 +)))|(% style="width:626px" %)Perform basic statistical analysis of spike trains from rate profiles to pair-wise correlations. 64 64 |(% style="width:300px" %)Spatio-temporal_spike_patterns|(% style="width:267px" %)Regimatas Jurkus 65 -Alessandra Stella|(% style="width:848px" %)Highlights two methods for detecting hidden spatio-temporal patterns in spike data. 66 -|(% style="width:300px" %)GPFA|(% style="width:267px" %)Simon Essink|(% style="width:848px" %)Extract low-dimensional rate trajectories from the population spike activity. 67 -|(% style="width:300px" %)Surrogate_techniques|(% style="width:267px" %)Peter Bouss|(% style="width:848px" %)Learn how to use different surrogate methods for spike trains to assist in formulating statistical null hypotheses in the presence of non-stationarity. 68 -|(% style="width:300px" %)NEST-Elephant|(% style="width:267px" %)((( 69 -Jessica Mitchell 70 -Moritz Kern 71 -)))|(% style="width:848px" %)Learn how to simulate a neural network with NEST, analyse data with Elephant and visualize results with Viziphant. 55 +Alessandra Stella|(% style="width:626px" %)Highlights two methods for detecting hidden spatio-temporal patterns in spike data. 56 +|(% style="width:300px" %)GPFA|(% style="width:267px" %)Simon Essink|(% style="width:626px" %)Extract low-dimensional rate trajectories from the population spike activity. 57 +|(% style="width:300px" %)Surrogate_techniques|(% style="width:267px" %)Peter Bouss|(% style="width:626px" %)Learn how to use different surrogate methods for spike trains to assist in formulating statistical null hypotheses in the presence of non-stationarity. 72 72 73 -== List of external teaching and training resources == 74 - 75 -* **IBOTS Code** offers a wealth of teaching and training material, including Neo and Elephant training, at: [[https:~~/~~/ibots-bonn.de/teaching/>>https://ibots-bonn.de/teaching/]] 76 - 77 -== == 78 - 79 -== List of past events == 80 - 81 - 82 -August 25-26, 2025 **INCF-SeRC-EBRAINS-Sweden workshop on FAIR neuroscience 2025 on Managing and Analyzing electrophysiology data using Neo and Elephant (Stockholm, Sweden)** 83 -Program: [[https:~~/~~/www.ebrains.eu/news-and-events/tutorials-and-users-day-2025>>https://www.ebrains.eu/news-and-events/tutorials-and-users-day-2025]] 84 - 85 - 86 -March 12, 2025 **Accelerate Your Neuroscience Research with EBRAINS** **(Heidelberg, Germany)** 87 -Program: [[https:~~/~~/www.ebrains.eu/news-and-events/tutorials-and-users-day-2025>>https://www.ebrains.eu/news-and-events/tutorials-and-users-day-2025]] 88 - 89 - 90 -Sept. 24-Nov. 8, 2024 **Advanced Neural Data Analysis and Neuroinformatics ANDA-NI (Jülich, Germany)** 91 -Website: [[https:~~/~~/andani.info>>https://andani.info]] 92 - 93 - 94 -July 15, 2023 **CNS 2023, 32nd Annual Computational Neuroscience Meeting (Leipzig)** 95 -Program: [[https:~~/~~/www.cnsorg.org/cns-2023-meeting-program>>https://www.cnsorg.org/cns-2023-meeting-program]] 96 - 97 - 98 -April 5, 2023 **Data Analysis using Elephant (Hybrid), SMHB General Assembly (Jülich, Germany)** 99 - 100 - 101 -((( 102 -November 10, 2022** Simulate with EBRAINS (Online)** 103 -Agenda: [[https:~~/~~/flagship.kip.uni-heidelberg.d/jss/HBPm?m=showAgenda&meetingID=242>>https://flagship.kip.uni-heidelberg.de/jss/HBPm?m=showAgenda&meetingID=242]] 104 - 105 - 106 -July 1, 2022 **Satellite tutorial at the annual CNS meeting (Online)** 107 -Program: [[https:~~/~~/ocns.github.io/SoftwareWG/pages/software-wg-satellite-tutorials-at-cns-2022.html>>https://ocns.github.io/SoftwareWG/pages/software-wg-satellite-tutorials-at-cns-2022.html]] 108 - 109 - 110 -June 13-15, 2022 **BASSES workshop (Rome, Italy)** 111 -Program: [[https:~~/~~/www.humanbrainproject.eu/en/education/ebrains- workshops/basses/>>https://www.humanbrainproject.eu/en/education/ebrains-workshops/basses/]] 112 - 113 - 114 114 115 115 ))) 116 -))) 117 117 62 + 118 118 (% class="col-xs-12 col-sm-4" %) 119 119 ((( 120 120 {{box title="**Contents**"}}
- Collaboratory.Apps.Collab.Code.CollabClass[0]
-
- owner
-
... ... @@ -1,1 +1,0 @@ 1 -denker
- XWiki.XWikiRights[5]
-
- Allow/Deny
-
... ... @@ -1,1 +1,0 @@ 1 -Allow - Levels
-
... ... @@ -1,1 +1,0 @@ 1 -view - Users
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.XWikiGuest
- XWiki.XWikiRights[6]
-
- Allow/Deny
-
... ... @@ -1,1 +1,0 @@ 1 -Allow - Groups
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.XWikiAllGroup - Levels
-
... ... @@ -1,1 +1,0 @@ 1 -view
- XWiki.XWikiRights[3]
-
- Allow/Deny
-
... ... @@ -1,0 +1,1 @@ 1 +Allow - Levels
-
... ... @@ -1,0 +1,1 @@ 1 +view - Users
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.XWikiGuest
- XWiki.XWikiRights[4]
-
- Allow/Deny
-
... ... @@ -1,0 +1,1 @@ 1 +Allow - Groups
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.XWikiAllGroup - Levels
-
... ... @@ -1,0 +1,1 @@ 1 +view