Last modified by pierstanpaolucci on 2023/06/29 18:29

From version 16.1
edited by pierstanpaolucci
on 2021/09/22 10:43
Change comment: There is no comment for this version
To version 18.1
edited by pierstanpaolucci
on 2021/09/22 10:49
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -3,7 +3,7 @@
3 3  (% class="container" %)
4 4  (((
5 5  (% class="lead" id="HInteractiveExplorationofBrainStatesandSpatio-TemporalActivityPatternsinData-ConstrainedSimulations" %)
6 -(% style="background-color:#ffffff; color:#f39c12" %)Explore brain states and spatio-temporal cortical activity patterns on your own
6 +Open the Lab link on the left to explore brain states and spatio-temporal cortical activity patterns on your own
7 7  )))
8 8  )))
9 9  
... ... @@ -11,11 +11,8 @@
11 11  (((
12 12  (% class="col-xs-12 col-sm-8" %)
13 13  (((
14 -(% class="lead" id="HOpentheLablinkonthelefttolaunchtheinteractivesimulation" %)
15 -Open the Lab link on the left to launch the interactive simulation
14 +**How the same network can generate different brain states with their specific propagation patterns and rhythms?**
16 16  
17 -How the same network can generate different brain states with their specific propagation patterns and rhythms?
18 -
19 19  In this Jupyter Lab the user can interactively change the neuromodulated fatigue parameters and observe in real-time the emergence of different categories of slow- wave wave-propagation patterns and the transition to an asynchronous regime on a columnar mean-field model equipped with lateral connections inferred from experimentally acquired cortical activity.
20 20  
21 21  The model displays the dorsal view of a mouse cortical hemisphere sampled by pixels of 100-micron size over a 25 mm2 field of view.
... ... @@ -26,6 +26,8 @@
26 26  
27 27  The predecessor of this model can be found at (3)
28 28  
26 +The latest version of the code presented in the drive of this collab can be found at (4)
27 +
29 29  (1) Capone, C. et al. (2021) “Simulations Approaching Data: Cortical Slow Waves in Inferred Models of the Whole Hemisphere of Mouse” arXiv:2104.07445 [[https:~~/~~/arxiv.org/abs/2104.07445>>https://arxiv.org/abs/2104.07445]]
30 30  
31 31  (2) Resta, F., Allegra Mascaro, A. L., & Pavone, F. (2020). //Study of Slow Waves (SWs) propagation through wide-field calcium imaging of the right cortical hemisphere of GCaMP6f mice// [Data set]. EBRAINS. [[DOI: 10.25493/3E6Y-E8G>>url:https://doi.org/10.25493%2F3E6Y-E8G]]
... ... @@ -32,10 +32,10 @@
32 32  
33 33  (3) Mean Field Simulation of whole mouse hemisphere with parameters inferred from optical recordings [[https:~~/~~/search.kg.ebrains.eu/instances/e572362f-9461-4f9d-81e2-b69cd44185f4>>https://search.kg.ebrains.eu/instances/e572362f-9461-4f9d-81e2-b69cd44185f4]]
34 34  
35 -= =
34 +(% class="wikigeneratedid" id="H" %)
35 +(4) [[https:~~/~~/github.com/APE-group/InteractiveExplorationBrainStates>>https://github.com/APE-group/InteractiveExplorationBrainStates]]
36 36  )))
37 37  
38 -
39 39  (% class="col-xs-12 col-sm-4" %)
40 40  (((
41 41  {{box title="**Contents**"}}