Last modified by pierstanpaolucci on 2023/06/29 18:29

From version 17.1
edited by pierstanpaolucci
on 2021/09/22 10:46
Change comment: There is no comment for this version
To version 13.2
edited by pierstanpaolucci
on 2021/09/22 10:34
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -3,10 +3,7 @@
3 3  (% class="container" %)
4 4  (((
5 5  (% class="lead" id="HInteractiveExplorationofBrainStatesandSpatio-TemporalActivityPatternsinData-ConstrainedSimulations" %)
6 -Open the Lab link on the left to
7 -
8 -(% class="lead" %)
9 -Explore brain states and spatio-temporal cortical activity patterns on your own
6 +(% style="color: rgb(243, 156, 18); background-color: rgb(255, 255, 255)" %)Explore brain states and spatio-temporal cortical activity patterns on your own
10 10  )))
11 11  )))
12 12  
... ... @@ -14,8 +14,11 @@
14 14  (((
15 15  (% class="col-xs-12 col-sm-8" %)
16 16  (((
17 -**How the same network can generate different brain states with their specific propagation patterns and rhythms?**
14 +(% class="lead" id="HOpentheLablinkonthelefttolaunchtheinteractivesimulation" %)
15 +Open the Lab link on the left to launch the interactive simulation
18 18  
17 +How the same network can generate different brain states with their specific propagation patterns and rhythms?
18 +
19 19  In this Jupyter Lab the user can interactively change the neuromodulated fatigue parameters and observe in real-time the emergence of different categories of slow- wave wave-propagation patterns and the transition to an asynchronous regime on a columnar mean-field model equipped with lateral connections inferred from experimentally acquired cortical activity.
20 20  
21 21  The model displays the dorsal view of a mouse cortical hemisphere sampled by pixels of 100-micron size over a 25 mm2 field of view.
... ... @@ -24,17 +24,14 @@
24 24  
25 25  The experimental data set from which the model has been inferred has been provided by LENS and it is available in the EBRAINS KG (2)
26 26  
27 -The predecessor of this model can be found at (3)
28 -
29 29  (1) Capone, C. et al. (2021) “Simulations Approaching Data: Cortical Slow Waves in Inferred Models of the Whole Hemisphere of Mouse” arXiv:2104.07445 [[https:~~/~~/arxiv.org/abs/2104.07445>>https://arxiv.org/abs/2104.07445]]
30 30  
31 31  (2) Resta, F., Allegra Mascaro, A. L., & Pavone, F. (2020). //Study of Slow Waves (SWs) propagation through wide-field calcium imaging of the right cortical hemisphere of GCaMP6f mice// [Data set]. EBRAINS. [[DOI: 10.25493/3E6Y-E8G>>url:https://doi.org/10.25493%2F3E6Y-E8G]]
32 32  
33 -(3) Mean Field Simulation of whole mouse hemisphere with parameters inferred from optical recordings [[https:~~/~~/search.kg.ebrains.eu/instances/e572362f-9461-4f9d-81e2-b69cd44185f4>>https://search.kg.ebrains.eu/instances/e572362f-9461-4f9d-81e2-b69cd44185f4]]
34 -
35 35  = =
36 36  )))
37 37  
34 +
38 38  (% class="col-xs-12 col-sm-4" %)
39 39  (((
40 40  {{box title="**Contents**"}}