Last modified by pierstanpaolucci on 2023/06/29 18:29

From version 18.1
edited by pierstanpaolucci
on 2021/09/22 10:49
Change comment: There is no comment for this version
To version 15.1
edited by pierstanpaolucci
on 2021/09/22 10:42
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -3,7 +3,7 @@
3 3  (% class="container" %)
4 4  (((
5 5  (% class="lead" id="HInteractiveExplorationofBrainStatesandSpatio-TemporalActivityPatternsinData-ConstrainedSimulations" %)
6 -Open the Lab link on the left to explore brain states and spatio-temporal cortical activity patterns on your own
6 +(% style="background-color:#ffffff; color:#f39c12" %)Explore brain states and spatio-temporal cortical activity patterns on your own
7 7  )))
8 8  )))
9 9  
... ... @@ -11,8 +11,11 @@
11 11  (((
12 12  (% class="col-xs-12 col-sm-8" %)
13 13  (((
14 -**How the same network can generate different brain states with their specific propagation patterns and rhythms?**
14 +(% class="lead" id="HOpentheLablinkonthelefttolaunchtheinteractivesimulation" %)
15 +Open the Lab link on the left to launch the interactive simulation
15 15  
17 +How the same network can generate different brain states with their specific propagation patterns and rhythms?
18 +
16 16  In this Jupyter Lab the user can interactively change the neuromodulated fatigue parameters and observe in real-time the emergence of different categories of slow- wave wave-propagation patterns and the transition to an asynchronous regime on a columnar mean-field model equipped with lateral connections inferred from experimentally acquired cortical activity.
17 17  
18 18  The model displays the dorsal view of a mouse cortical hemisphere sampled by pixels of 100-micron size over a 25 mm2 field of view.
... ... @@ -23,8 +23,6 @@
23 23  
24 24  The predecessor of this model can be found at (3)
25 25  
26 -The latest version of the code presented in the drive of this collab can be found at (4)
27 -
28 28  (1) Capone, C. et al. (2021) “Simulations Approaching Data: Cortical Slow Waves in Inferred Models of the Whole Hemisphere of Mouse” arXiv:2104.07445 [[https:~~/~~/arxiv.org/abs/2104.07445>>https://arxiv.org/abs/2104.07445]]
29 29  
30 30  (2) Resta, F., Allegra Mascaro, A. L., & Pavone, F. (2020). //Study of Slow Waves (SWs) propagation through wide-field calcium imaging of the right cortical hemisphere of GCaMP6f mice// [Data set]. EBRAINS. [[DOI: 10.25493/3E6Y-E8G>>url:https://doi.org/10.25493%2F3E6Y-E8G]]
... ... @@ -31,10 +31,10 @@
31 31  
32 32  (3) Mean Field Simulation of whole mouse hemisphere with parameters inferred from optical recordings [[https:~~/~~/search.kg.ebrains.eu/instances/e572362f-9461-4f9d-81e2-b69cd44185f4>>https://search.kg.ebrains.eu/instances/e572362f-9461-4f9d-81e2-b69cd44185f4]]
33 33  
34 -(% class="wikigeneratedid" id="H" %)
35 -(4) [[https:~~/~~/github.com/APE-group/InteractiveExplorationBrainStates>>https://github.com/APE-group/InteractiveExplorationBrainStates]]
35 += =
36 36  )))
37 37  
38 +
38 38  (% class="col-xs-12 col-sm-4" %)
39 39  (((
40 40  {{box title="**Contents**"}}